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Suppose we have data of the form
b = h ∗ u+ ε, (1)

where u is an image we want to recover, h is a point spread function (PSF), and ε is a noise term.
Suppose ε ∼ N(0, σ2I), where σ is unknown. Let F denote the unitary discrete Fourier transform
operator. Let x̂ = Fx for an image x. Then

b̂ = ĥ · û+ ε̂. (2)

Proposition 1. Suppose ε ∼ N(0, σ2I). Then

ε̂ = |ε̂|eiθ, (3)

where |ε̂| ∼ N(0, σ2I) and θ ∼ U([−π, π)).

This result is explained in the abstract of this article [1].

Proof. Before going into the rigorous proof, we provide some leading results. First

Eε̂k = N−1/2E
N−1∑
j=0

εje
−i2πkj/N

= N−1/2
N−1∑
j=0

Eεje−i2πkj/N = 0.

(4)

Next

Ê|εk|2 = N−1E
N−1∑
m=0

N−1∑
n=0

εmεne
−i2πk(m−n)/N

= N−1
N−1∑
m=0

Eε2m = σ2.

(5)

So the mean and variance match the claims of the proof.
In general, for a Gaussian variable X with mean µ covariance matrix σ, the characteristic

function is given by

φX(t) = exp

(
iµt− t2σ2

2

)
,

and for any constants a, b and independent random variable X, Y the characteristic function for
aX + bY is

φaX+bY (t) = φX(at)φy(bt).
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Therefore, combining these two facts, the characteristic function for Xk = Re{ε̂k} is

φXk
(t) = exp

− t2σ2
2N

N−1∑
j=0

cos2(2πkj/N)

 (6)

Write cos2 as

cos2(2πkj/N) =

(
ei2πkj/N + e−i2πkj/N

2

)2

=

(
ei4πkj/N + e−i4πkj/N + 2

4

)
.

Substituting this into the sum in (6) obtains

N−1∑
j=0

cos2(2πkj/N) = N/2,

therefore the characteristic for Xk is

exp

(
− t

2σ2

4

)
,

which is the characteristic of a mean zero normal distribution with variance σ2/2. Repeating this
result on the imaginary part (Yk = Im{εk}) of the Fourier coefficients with sines almost completes
the proof. What we have shown is that

Xk ∼ N(0, σ2/2) and Yk ∼ N(0, σ2/2).

The remainder of the proof would be to shown then that

ε̂k = Xk + iYk

satisfies the statement of the proposition. The claim about the squared magnitude is straightfor-
ward. The claim about the phase is not clear to me how to show.

Now given b, we can estimate σ2 in the following way. The Fourier transform b̂ is composed
of two parts ε̂ and ĥ · û. The first term is described in the previous proposition. The second term
is something which has been low pass filtered by h. Therefore, what remained at the high pass
regions should be dominated by ε̂. Therefore, we take b̂, isolate the high wave numbers to be some
set say S, and take the average over the squared terms in S to estimate σ2:

σ̂2 = |S|−1
∑
k∈S
|b̂k|2.

Be careful not to estimate σ by just averaging the magnitudes. If one wanted to do that, then it
should be done with the following formula:

σ̂ = |S|−1
√
π

2

∑
k∈S
|b̂k|.

The scaling factor comes from the fact that for a random variable X ∼ N(0, σ2), it can be shown
that

E|X| =
√

2

π
σ.
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Median Absolute Deviation

A more robust σ estimation is given by the median absolute deviation (MAD):

σ̂ =
1

0.6745
mediank∈S |b̂k|.

The median estimation is more robust to outliers, and for a normally distributed data set {xi}i with
mean 0 and variance 1, 50% of the distribution is on the interval [−.6745, .6745] (i.e. φ(.6745) −
φ(−.6745) ≈ .5), hence

E[mediani|xi|] = .6745.

Fourier transform of Gaussian

This seems like a good time for a formal proof of the well known fact: the Fourier transform of a
Gaussian is a Gaussian. This is seen in the earlier derivation, where the characteristic function is
a Gaussian. I wanted to give the formal proof here:

Proposition 2. Let

f(x) =
1√

2πσ2
exp

(
− x2

2σ2

)
.

Then

f̂(ξ) =

∫
R
f(x)e−i2πxξ dx = exp

(
−2σ2π2ξ2

)
Proof. The key to the proof is the completing the square with a complex number:

x2 + i4πσ2ξx = (x+ i2πσ2ξ)2 + (2πξσ2)2. (7)

Using this we obtain

f̂(ξ) =
1√

2πσ2

∫
R

exp

(
− x2

2σ2
− i2πxξ

)
dx

=
1√

2πσ2

∫
R

exp

(
− 1

2σ2
(
x2 + i4πσ2xξ

))
dx

=
1√

2πσ2

∫
R

exp

(
− 1

2σ2
(
(x+ i2πσ2ξ)2 + (2πξσ2)2

))
dx

=
exp(−2σ2π2ξ2)√

2πσ2

∫
R

exp

(
− 1

2σ2
(x+ i2πσ2ξ)2

)
dx.

(8)

The remainder of the proof involves showing in the last line that the integral cancels the de-
nominator. Certainly, if ξ = 0 this is true. It then suffices to show

F (a) =

∫
R

exp
(
−(x+ ia)2

)
dx

is a constant by showing the F ′(a) = 0.
Note: it is probably much easier to work with f(x) = e−x

2
and just change variables later using

the scaling properties of the Fourier transform.

References

[1] D. Freedman et al. The empirical distribution of fourier coefficients. The Annals of Statistics,
8(6):1244–1251, 1980.

3


