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Toby Sanders

Abstract

This document is a write up of my course notes on wavelets taught by Pencho Petrushev.
Sections 1-4 is the material provided from the course. Section 5 contains some of my more
recent research into the evaluation of computing wavelet decompositions and reconstructions
in practice.
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1 Introduction and The Multiresolution Analysis (MRA)

The most foundational component to wavelet theory is the definition of MRA.

Definition 1 (MRA). Vn ⊂ L2(R), n ∈ Z, Vn is a subspace.

1. · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . .

2. span (∪nVn) = L2(R)

3. ∩nVn = {0}

4. f(x) ∈ Vj ⇐⇒ f(2−jx) ∈ V0
5. f ∈ V0 ⇐⇒ f(x−m) ∈ V0, ∀m

6. ∃φ ∈ V0 s.t. {φ(x− n)}n∈Z is an O.N.B. for V0. φ is the scaling function.

Remark 1. {2jφ(2j/2x− k)}k∈Z is an O.N.B. for Vj.

1.1 Haar Basis: The simplest wavelet basis

Before diving into the rigorous mathematical theory, we provide the definition of the simplest
wavelet basis, the Haar basis.

• Haar scaling function: φ(x) = 1[0,1)(x).

• Haar Mother wavelet: ψ(x) =


1 if x ∈ [0, 1/2)

−1 if x ∈ [1/2, 1)

0 if O.W.

• φjk = 2j/2φ(2jx− k)

• ψjk = 2j/2ψ(2jx− k)

Let f ∈ Vn where

Vn :=
{
f(x) =

2n−1∑
k=0

pk1[k/2n,(k+1)/2n)

}
,

then

f(x) =

2n−1∑
k=0

cnkφnk(x),

where cnk = 〈f, φnk〉. Moreover, the wavelet basis for Vn is given by

φ00 ∪ {{ψjk}2
j−1
k=0 }

n−1
j=0 .

Hence, for f ∈ Vn,

f(x) = c00φ00(x) +

n−1∑
j=0

2j−1∑
k=0

djkψjk(x),

where djk = 〈f, ψjk〉. djk are the detail coefficients and cjk are the approximation coefficients. To
obtain a basis for L2[0, 1] we take the limit as n → ∞. In practice in the digital domain, n is of
course finite.
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Figure 1: Diagram for fast calculation of the wavelet coefficients.

1.2 Quickly calculating the coefficients (illustrated with Haar)

First note

φjk =
1√
2

(φj+1,2k(x) + φj+1,2k+1(x)) ,

hence

cjk =
1√
2

∫ 1

0

f(x) (φj+1,2k(x) + φj+1,2k+1(x)) dx

=
1√
2

(
cj+1
2k + cj+1

2k+1

) (1)

Similarly noting

ψjk =
1√
2

(φj+1,2k − φj+1,2k+1) ,

hence

djk =
1√
2

(
cj+1
2k − c

j+1
2k+1

)
Hence, the larger element coefficients from the basis (lower frequency elements) djk and cjk are
computed from the smaller elements (higher frequency) coefficients one level up. Moroever, they
may be evaluated by high pass filtering and low pass filtering (with ψ and φ), respectively, followed
by a downsampling (keeping every other coefficient, since there are half as many as the levels go
down). See Figure 1 for an illustration.

2 Important Preliminary Results

Let H be a Hilbert Space. We say {xn}n∈Z ⊂ H is a Riesz sequence if

c1

(∑
n∈Z

|an|2
)1/2

≤

∥∥∥∥∥∑
n∈Z

anxn

∥∥∥∥∥
H

≤ c2

(∑
n∈Z

|an|2
)1/2

, (2)

∀(an)n with c1, c2 > 0. Also, {xn}n is called a Riesz basis if span{xn}n∈Z = H.

Proposition 1. Let φ ∈ L2(R). Then
(i)

a

(∑
n

|an|2
)1/2

≤

∥∥∥∥∥∑
n∈Z

anφ(x− n)

∥∥∥∥∥
2

≤ A

(∑
n

|an|2
)1/2

, ∀{an}n∈Z ∈ `2
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⇐⇒
(ii) For almost all ξ ∈ [0, 2π),

a2

2π
≤
∑
n∈Z

|φ̂(ξ + 2πk)|2 ≤ A2

2π
.

The proof is provided in the appendix.

Corollary 1. φ ∈  L2(R). {φ(x− n)}n∈Z is an orthonormal system if and only if∑
k∈Z

|φ̂(ξ + 2πk)|2 = 1/2π

almost everywhere.

If g ∈ span{φ(x− n)}n, then g =
∑
n∈Z anφ(x− n) and

ĝ(ξ) =

(∑
n∈Z

ane
−inξ

)
︸ ︷︷ ︸

h(ξ)

φ̂(ξ). (3)

Moreover

‖g‖22 =

∫ 2π

0

|h(ξ)|2
∑
k∈Z

|φ̂(ξ + 2πk)|dξ ≤ A2

2π

∫ 2π

0

|h(ξ)|2 dξ,

hence

A−1‖g‖2 ≤
(

1

2π

∫ 2π

0

|h(ξ)|2 dξ

)
≤ a−1‖g‖2

Proposition 2. Under the conditions of the previous proposition 1, there exists φ1 ∈ span{φ(x −
n)}n such that {φ1(x− n)}n∈Z forms an orthonormal basis for span{φ(x− n)}n.

proof of Proposition 2. φ̂1(ξ) = h(ξ)φ̂(ξ), like above in (3), and

1

2π
=
∑
k∈Z

|h(ξ + 2πk)|2︸ ︷︷ ︸
2πperiodic

|φ̂(ξ + 2πk)|2 = |h(ξ)|2
∑
k∈Z

|φ̂(ξ + 2πk)|2

by the previous corollary. Choose h to be real and set

φ̂1(ξ) =
φ̂(ξ)

√
2π
(∑

k∈Z |φ̂(ξ + 2πk)|2
)1/2 .

Then φ1 ∈ span{φ(x− n)}n since it takes the form (3) and∑
k∈Z

|φ̂1(ξ + 2πk)|2 =
1

2π
,

which by Corollary 1 implies it form an orthonormal basis.
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3 The Scaling Equation

Let φ(x) ∈ V0. Then

φ(x/2) =
∑
n∈Z

anφ(x− n)

φ(x) =
∑
n∈Z

anφ(2x− n)

φ̂(x/2)(ξ) = 2φ̂(2ξ)

φ̂(2ξ) =
1

2

∑
n∈Z

ane
−inξφ̂(ξ) = m(ξ)φ̂(ξ)

(4)

or equivalently
φ̂(ξ) = m(ξ/2)φ̂(ξ/2), (5)

where m(ξ) is 2π periodic.

√
2 = ‖φ(x/2)‖2 =

(∑
n

|an|2
)1/2

(6)

Lemma 1.
|m(ξ)|2 + |m(ξ + π)|2 = 1. (7)

proof of Lemma 1.

1/2π =
∑
k∈Z

|φ̂(ξ + 2πk)|2

=
∑
k∈Z

|m(ξ/2 + πk)|2|φ̂(ξ/2 + πk)|2

=
∑
k∈Z

|m(ξ/2 + 2πk)|2|φ̂(ξ/2 + 2πk)|2 + |m(ξ/2 + 2πk + π)|2|φ̂(ξ/2 + 2πk + π)|2

= |m(ξ/2)|2
∑
k∈Z

|φ̂(ξ/2 + 2πk)|2 + |m(ξ/2 + π)|2
∑
k∈Z

|φ̂(ξ/2 + 2πk + π)|2

= |m(ξ/2)|2/2π + |m(ξ/2 + π)|2/2π.

(8)

Theorem 1. Let φ ∈ L2(R). Suppose

1.

a

(∑
n∈Z

|an|2
)1/2

≤

∥∥∥∥∥∑
n∈Z

anφ(x− n)

∥∥∥∥∥
2

≤ A

(∑
n∈Z

|an|2
)1/2

, ∀{an}n

2. φ(x/2) =
∑
n∈Z anφ(x− n) in the L2 sense.

3. φ̂(ξ) is continuous at ξ = 0 and φ̂(0) 6= 0 ⇐⇒
∫

R φ dx 6= 0.
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Let Vj = span{φ(2jx−k)}k∈ Z , ∀j ∈ Z. Then {Vj}j∈ Z forms a multiresolutional analysis (MRA).

This result is basically just a culmination of some of the previous results, along with a few claims
that need to be proven. It is left as an exercise to the reader.

4 Construction of Wavelets

Recall
· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . .

Denote
Wj := Vj+1 	 Vj ⇐⇒ Vj ⊕Wj = Vj+1

Then Wj is the set of all f ∈ Vj+1 such that f⊥Vj . Then

Vj+1 = ⊕jv=−∞Wv

and
L2(R)−⊕j∈ZWj .

Now there exists ψ ∈ W0 such that {ψ(x − n)}n∈Z is an othonormal basis for W0, and then
{ψjk}k∈Z is an orthonormal basis for Wj , where ψjk(x) = 2j/2ψ(2jx− k). Finally then {ψjk}j,k∈Z

is an orthonormal basis for L2(R).

4.1 Complete Characterization in Fourier Domain

Our goal is to find {ψ(x − n)}n∈Z that is an orthonormal basis for W0. Return to the scaling
equation:

φ(x/2) =
∑
n∈Z

anφ(x− n) ⇐⇒ φ̂(2ξ) = m(ξ)︸ ︷︷ ︸
2πperiodic

φ̂(ξ),

where

m(ξ) =
1

2

∑
n∈Z

ane
−inξ.

Hence φ̂(ξ) = m(ξ/2)φ̂(ξ/2). Also recall∑
k∈Z

|φ̂(ξ + 2πk)|2 =
1

2π
,

and
|m(ξ)|2 + |m(ξ + π)|2 = 1

Claim: (
1

2π

∫ 2π

0

|m(ξ)|2 dξ

)1/2

= 1/
√

2. (9)
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proof of (9). ∫
R
|φ(x/2)|2 dx =

∫
R
|φ(y)|22 dy = 2,

hence
√

2 = ‖φ(x/2)‖2 = ‖2φ̂(2ξ)‖2 = 2‖m(ξ)φ̂(ξ)‖2, and finally

√
2/2 = ‖m(ξ)φ̂(ξ)‖2

=

(∫
R
|m(ξ)|2|φ̂(ξ)|2 dξ

)1/2

=

(∫ 2π

0

∑
k∈Z

|m(ξ + 2πk)|2|φ̂(ξ + 2πk)|2 dξ

)1/2

=

(∫ 2π

0

|m(ξ)|2
∑
k∈Z

|φ̂(ξ + 2πk)|2 dξ

)1/2

=

(
1

2π

∫ 2π

0

|m(ξ)|2 dξ

)1/2

(10)

Using similar argument to the above proof

g ∈ V0 ⇐⇒ ĝ(ξ) = mg(ξ)φ̂(ξ),

moreover

‖g‖2 =

(
1

2π

∫
R
|mg(ξ)|2 dξ

)1/2

.

We have
f ∈ V1 ⇐⇒ f(x) =

√
2g(2x), for some g ∈ V0,

and if follows that

• ‖f‖2 = ‖g‖2.

• f̂(ξ) = 1/
√

2ĝ(ξ/2)

• f̂(ξ) = mf (ξ/2)φ̂(ξ/2)

• 1/
√

2‖f‖2 =
(

1/2π
∫ 2π

0
|mf (ξ)|2 dξ

)1/2
.
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The first two bullet points follow trivially. The third follows from

f(x) =
∑
n

anφ(2x− n)

⇒ f̂(ξ) =
∑
n

an

∫
R
φ(2x− n)e−ixξ dx

=
∑
n

an

∫
R
φ(y)e−iξ/2(y+n)/2 dy

=
1

2

∑
n

ane
−iξ/2nφ̂(ξ/2)

= mf (ξ/2)φ̂(ξ/2).

(11)

The last line follows by similar calculations performed before by manipulating the above equation.

Proposition 3. If u, v, x, y ∈ C, and (u, v) is orthogonal to (x, y), then (u, v) = α(y,−x) for some
α ∈ C.

The proof is provided in the appendix.

Proposition 4. f ∈W0 if and only if

f̂(ξ) = eiξ/2V (ξ)mφ(ξ/2 + π)φ̂(ξ/2 + π),

almost everywhere, where V (ξ) is 2π-periodic. Moreover,

‖f‖2 =

(
1

2π

∫ 2π

0

|V (ξ)|2 dξ

)1/2

.

The proof is provided in the appendix.

Lemma 2. f ∈ W0, then {f(x − n)}n is an orthonormal basis for W0 if and only if |V (ξ)| = 1
a.e.

proof of Lemma 2. Recall {f(x− n)}n∈Z is an orthonormal system if and only if∑
k∈ Z

|f̂(ξ + 2πk)|2 = (2π)−1.

Then ∑
k∈Z

|f̂(ξ + 2πk)|2 =
∑
k∈Z

|V (ξ)|2|mφ(ξ/2 + πk)|2|φ̂(ξ/2 + πk)|2

= |V (ξ)|2
[∑
k∈Z

|mφ(ξ/2 + 2πk)|2|φ̂(ξ/2 + 2πk)|2

+
∑
k∈Z

|mφ(ξ/2 + π + 2πk)|2|φ̂(ξ/2 + π + 2πk)|2
]

= |V (ξ)|2/2π

(12)
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Theorem 2. ψ is a mother wavelet and {ψ(x−n)}n is an orthonormal basis for W0 if and only if

ψ̂(ξ) = eiξ/2V (ξ)mφ(ξ/2 + π)φ̂(ξ/2), (13)

where |V (ξ)| = 1 a.e. and V (ξ) is 2π-periodic.

4.2 Back To The Real Space

The characterization of a wavelet basis is essentially provided in the Fourier domain by Theorem
2. Choose V (ξ) = 1 and see what happens. In this case

ψ̂(ξ) =
1

2
eiξ/2

∑
n∈Z

ane
in(ξ/2+π)φ̂(ξ/2)

=
1

2

∑
n∈Z

(−1)nane
i(n+1)ξ/2φ̂(ξ/2)

(14)

Then
ψ(x) =

∑
n∈Z

an(−1)nφ(2x+ n+ 1),

where

an =

∫
φ(x/2)φ(x− n)dx.

Other constructions of wavelets are formed by simply using (13) and choosing different functions
for V such that |V (ξ)| = 1.

5 Fast Wavelet Transform

This section loosely provides the foundation and ideas for computing fast wavelet transforms in
practice.

5.1 Basics

Let the original signal be denoted by s. The orthonormal wavelet representation with ` levels is
written as

s(x) =
∑̀
j=1

∑
k

dj,kψj,k(x) +
∑
k

akφk(x) (15)

The index j represents the scale (level) and k the shift. Contrary to the notation used earlier, larger
values of the level j correspond to wider basis functions (lower frequency components). The dj,k
are the detail coefficients and the ak are the approximation coefficients for the scaling function φ.
ψ are the wavelets, where now the notation is

ψj,k(x) = cψ(2−j+1x− k),

where c is a normalization. For a signal of length 2N there are 2N−j basis elements at the jth level,
and 2N−` basis scaling functions. As a sanity check, one may confirm adding all of those numbers
together gives you 2N basis functions.
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5.2 Fast Decomposition through layered filtering

Since (15) is an orthonormal representation

dj,k = 〈s, ψj,k〉.

To perform these operations fast in practice, we make use of relationships between the levels and
convolution operations, with ψ and φ. The functions ψ and φ without a subscript denote these
basis functions in their form with smallest support (highest frequency). In general, convolution
with ψ and φ act as HPF and LPF respectively. The detail coefficients dj,k at level j are extracted
from the vector

d̃j = φ ∗ φ ∗ · · · ∗ φ ∗ ψ ∗ s,

where the number of convolutions with φ is j−1, and d̃j is a vector containing all of the coefficients
dj,k and MORE. The extracted coefficients to obtain dj,k are every 2j elements of this vector, a
process known as down sampling. Hence we can write the set of coefficients as multiplying this
vector by a row sampling matrix P .

To this end, the fast wavelet transform is churned out by the following set of operations

s0 = s

dj = PΨsj−1

sj = PΦsj−1

(16)

Here, dj represents the vector of the full set of coefficients at level j. P is the row selector that
selects every other entry of the input vector (hence it is changing size for each j), and Ψ and Φ are
operators that perform the high pass and low pass filtering operations (hence convolution with ψ
and φ).

Then we may write the full orthonormal transformation as

c = Ws =



PΨ
PΨPΦ

PΨ(PΦ)2

...
PΨ(PΦ)`−1

(PΦ)`


s =


d1
d2
...
d`
s`


Note that I am abusing some notation here since P , Φ and Ψ will change size after each down
sampling. I suppose the proper way to write it would be something like

W =


PNΨN

PN/2ΨN/2PNΦN
PN/4ΨN/4PN/2ΦN/2PNΦN

...

 ,

where the subscripts denote the dimension of the signal the operator is acting on.
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5.3 Wavelet Reconstruction Algorithm

Since W is orthonormal, for the reconstruction we just need to evaluate

s = WT c,

which is performed in a similar manner with up-sampling operations (PT is a row stretching op-
eration). It turns out though that we can do better than this. Notice for instance, the last two
operations applied to each term will be

ΦTNP
T
Nαj ,

for some αj , and then all of these j terms will be added together. Hence, we should just add
them together first and then apply this operation. Now generalize this idea, so that each of these
upsampling and convolutions only happens once on a summed vector, and now you have a fast
wavelet reconstruction algorithm.

5.4 Multidimensional Wavelets

The extension of wavelets from 1D to higher dimensions is straightforward (unless you want some-
thing more sophisticated, like shearlets). Observe, if you have two orthonormal bases in 1D, {uj(x)}j
and {vj(x)}j , then an orthonormal basis in 2D may be obtained by

ϕjk(x, y) = uj(x)vk(y),

over all combinations of j and k. The fast transformation algorithm is then easily modified by
crossing the wavelet filters in two dimensions, and downsampling in both dimensions. It is also
straightforward to mix the chosen wavelets bases in the different dimensions.

Appendix

proof of Proposition 1. (ii)⇒ (i). First note the following∥∥∥∥∥∑
n

anφ(x− n)

∥∥∥∥∥
2

2

=

∥∥∥∥∥∑
n

ane
−inξφ̂(ξ)

∥∥∥∥∥
2

2

=

∫
R

∣∣∣∣∣∑
n

ane
−inξ

∣∣∣∣∣
2 ∣∣∣φ̂(ξ)

∣∣∣2
2

dξ

=

∫ 2π

0

∣∣∣∣∣∑
n

ane
−inξ

∣∣∣∣∣
2∑
k∈Z

∣∣∣φ̂(ξ + 2πk)
∣∣∣2 dξ

(17)
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Using the condition from (ii) and then noting that e−inξ is an orthogonal basis for L2[0, 2π), leads
to ∥∥∥∥∥∑

n

anφ(x− n)

∥∥∥∥∥
2

2

≤ A2/2π

∫ 2π

0

∣∣∣∣∣∑
n

ane
−inξ

∣∣∣∣∣
2

dξ

= A2/2π
∑
m

∑
n

aman

∫ 2π

0

ei(m−n)ξdξ

= A2/2π
∑
m

∑
n

aman2πδmn

= A2

(∑
n∈Z

a2n

)
(18)

The lower bound inequality is obtained likewise.
Next (i)⇒(ii). Define

Aα :=

{
ξ ∈ [0, 2π) |

∑
k∈Z

|φ̂(ξ + 2πk)|2 > α

}
.

Let
1Aα(ξ) =

∑
n∈Z

ane
−inξ, where an = 〈1Aα(ξ), e−inξ/2π〉.

Then by (i)

A2

(∑
n∈Z

|an|2
)
≥

∥∥∥∥∥∑
n∈Z

anφ(x− n)

∥∥∥∥∥
2

2

=

∫ 2π

0

∣∣∣∣∣∑
n∈Z

ane
−inξ

∣∣∣∣∣
2∑
k∈Z

|φ̂(ξ + 2πk)|2 dξ

=

∫
Aα

∑
k∈Z

|φ̂(ξ + 2πk)|2 dξ

> α|Aα|.

(19)

On the other hand, (∫ 2π

0

12
Aα(ξ)dξ

)1/2

= |Aα|1/2

=

∫ 2π

0

∣∣∣∣∣∑
n

ane
−inξ

∣∣∣∣∣
2

dξ

1/2

=
√

2π

(∑
n

|an|2
)1/2

(20)
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Combining (19) and (20) obtains

α|Aα| < A2

(∑
n∈Z

|an|2
)

= A22π|Aα|, (21)

hence
α < A2/2π,

which completes the proof (for the other inequality just consider the reverse set of point less than
α).

proof of Proposition 3. The conditions of the statement imply

|u||x|ei(θu−θx) + |v||y|ei(θv−θy) = 0.

Taking the magnitude of this equation and rearranging yields 1

|u|
|v|

=
|y|
|x|
.

This implies there’s a scalar α > 0 so that

(|u|, |v|) = α(|y|, |x|).

Now we search for θα so that
(u, v) = αeiθα(y,−x)

Then to get the phases of the first part of the equation to match, u = αeiθαy, we need θα = θu+θy.
Similarly, for the second part of the equation, θα = θv + θx + π. From the first line of the proof,
observe that

θα = θu + θy = θv + θx + π.

proof of Proposition 4. Note that f ∈ W0 ⇐⇒ f ∈ V1, f⊥V0. Then f⊥V0 if and only if for every
n

0 = 〈f, φ(x− n)〉

= 〈f̂ , e−iξnφ̂(ξ)〉

=

∫
R
f̂(ξ)eiξnφ̂(ξ) dξ

=

∫ 2π

0

eiξn
∑
k∈Z

f̂(ξ + 2πk)φ̂(ξ + 2πk) dξ

=

∫ 2π

0

eiξnF (ξ) dξ.

(22)

1Assuming no values of zero, in which case the proposition is trivial.
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Notice that F (ξ) is 2π periodic, but since the last line is 0, F (ξ) = 0 almost everywhere. Substituting
in the scaling equations for φ and for f in (11) leads to

0 =
∑
k∈Z

mf (ξ/2 + πk)mφ(ξ/2 + πk) |φ̂(ξ/2 + πk)|2

=
∑
k∈Z

mf (ξ/2 + 2πk)mφ(ξ/2 + 2πk) |φ̂(ξ/2 + 2πk)|2

+
∑
k∈Z

mf (ξ/2 + 2πk + π)mφ(ξ/2 + 2πk + π) |φ̂(ξ/2 + 2πk + π)|2

= mf (ξ/2)mφ(ξ/2)
∑
k∈Z

|φ̂(ξ/2 + 2πk)|2

+mf (ξ/2 + π)mφ(ξ/2 + π)
∑
k∈Z

|φ̂(ξ/2 + 2πk + π)|2

= (2π)−1
[
mf (ξ/2)mφ(ξ/2) +mf (ξ/2 + π)mφ(ξ/2 + π)

]

(23)

Hence letting η = ξ/2

0 =
[
mf (η)mφ(η) +mf (η + π)mφ(η + π)

]
= 〈(mf (η),mf (η + π)), (mφ(η),mφ(η + π))〉
⇒ (mf (η),mf (η + π))⊥(mφ(η),mφ(η + π))

(24)

This implies (see Proposition 3)

(mf (η),mf (η + π)) = α(η)(mφ(η + π),−mφ(η)). (25)

Hence,
(mf (η + π),mf (η)) = α(η + π)(mφ(η),−mφ(η + π)). (26)

By (25) and (26) we see that

mf (η) = α(η)mφ(η + π)

mf (η) = −α(η + π)mφ(η + π)

→ α(η) = −α(η + π)

(27)

Then
h(η) := e−iηα(η)

is π-periodic. Hence

f̂(ξ) = mf (ξ/2)φ̂(ξ/2)

= eiξ/2 h(ξ/2)︸ ︷︷ ︸
V (ξ)

mφ(ξ/2 + π)φ̂(ξ/2)

= eiξ/2V (ξ)mφ(ξ/2 + π)φ̂(ξ/2)

(28)

This completes the first statement of the proposition.
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Recall, f̂(ξ) = mf (ξ/2)φ̂(ξ/2) and

1√
2
‖f‖2 =

(
1

2π

∫ 2π

0

|mf (ξ)|2dξ

)1/2

.

By what we have already proven

mf (ξ/2) = eiξ/2V (ξ)mφ(ξ/2 + π),

hence

‖f‖2 =
√

2

(
1

2π

∫ 2π

0

|V (2ξ)|2|mφ(ξ + π)|2dξ

)1/2

.

Since V (2ξ) is π-periodic and mφ is 2π periodic we have

‖f‖2 =
√

2

(
1

2π

∫ π

0

|V (2ξ)|2(|mφ(ξ + π)|2 + |mφ(ξ)|2)dξ

)1/2

Using Lemma 1 completes the proof.
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