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Abstract

A terse introduction to parameter selection for regularization in image reconstruction is
provided. The methods known as unbiased predictive risk estimator (UPRE) and Stein’s
unbiased risk estimator (SURE) are explained and derived. A simple matlab implementation
of UPRE is also given.

Introduction

A common formulation of an inverse problem is stated as recovering a signal or image u ∈ Rn
from acquired measurements of the form b = Au+ ξ, where A ∈ Cm×n, b ∈ Rm and ξ is a noise
term. A maximum likelihood method for recovering u from b is a method which maximizes the
likelihood of the data given the recovered solution u, p(b|u). This leads to methods such as least
squares:

u∗ = arg min
u

1

2
‖Au− b‖22.

The solution to this problem is not unique whenever the linear system under-determined (the
number of linear independent rows in A is less than n), and in general these problems are
ill-posed. For these reasons, it is very common to introduce regularized methods (considered
maximum a posteriori methods that maximize p(u|b) instead), which may take the form

uλ = arg min
u

1

2
‖Au− b‖22 + λR(u). (1)

The regularization term R(u) is a prior term that promotes regularized or smooth solutions that
become less sensitive to noise. The data fitting term in the above equations can be modified to
account for the noise model, though these `2 models are appropriate for Gaussian white noise
models. Figure 1 highlights the effectiveness of a famous regularization method known as total
variation (TV), where an example of an electron tomography image reconstruction is shown
with (right) and without the regularization [2].

Now, if you find yourself presenting such methods at a conference or submitting your work
to a journal, then you will inevitably be asked ”how did you choose lambda?” This is a famous
question, and the most common answer is of course, ”based on experience.” People love to
ask this question, but rarely receive a good answer, because there were probably a million
other problems to work on before the author got around to choosing this hyper-parameter.
Selecting the parameter in a rigorous way is a full-blown research problem on its on. Some
effective methods exist, and I have tried to outline two of these below in an understandable
and meaningful way. Outlined are the unbiased predictive risk estimator (UPRE) and Stein’s
unbiased risk estimator (SURE) [4], which are closely related.

A broader overview of methods is given in the book of Vogel [5], and another good literature
review is provided in the paper of Ramani, et al [1].
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TVLeast squares

Figure 1: Comparison of a reconstructed tomography image with (right) and without (left)
regularization.

The basic idea for UPRE and SURE

Let the true solution to the inverse problem simply be denoted by u, and consider solutions
as functions of the regularization parameter λ given by uλ = u(λ) as written in (1). Then a
reasonable criteria for choosing the right λ can be given by minimizing a loss function F (λ) =
L(u, uλ), where L is a metric giving us some difference or loss between u and uλ, e.g. ‖u−uλ‖22.
If we can estimate F (λ) for any λ, then all we need to do is minimize F . At first it may not
seem possible that we can do this since we obviously do not know the true solution u, however
UPRE and SURE provide us with estimators of such quantities. In other words they provide
expected values for the loss function that can be evaluated, though not the true loss.

One important assumption is necessary for the derivation of these estimators1, that is the
knowledge that the noise in the data vector is mean zero i.i.d. Gaussian with variance σ2, i.e.
b ∼ N(Au, σ2I), where the variance σ2 is assumed to be known. However, if we do not know
σ, then [3] provides an iterative method to estimate this variable, which empirically converges
in very few iterations (e.g. 5 or less). Before deriving the methods, we first provide statements
and explanations of the estimators below.

In the case of UPRE, we must assume the regularized solution is given by some linear
transform of the data uλ = Bλb, e.g. for Tikhonov regularization with R(u) = 1

2‖Tu‖
2
2, then

uλ = (ATA+ λTTT )−1ATb. In this case, the error estimator is given by

F (λ) = E‖A(u− uλ)‖22 = −mσ2 + ‖Auλ − b‖22 + 2σ2trace (ABλ) (2)

Hence, if we can minimize the above expression with respect to λ, then we have achieved an
optimal solution for that regularization form. Figure 2 shows an example of the accuracy of the
UPRE estimator on a small test problem where the true solution was known.

The SURE method is more general because it is not derived from inverse models whose
solution is given by a linear transform. The estimate from SURE is given by

F (λ) = E‖A(u− uλ)‖22 = −mσ2 + ‖Auλ − b‖2 + 2σ2
n∑
i=1

∂(Auλ)i
∂bi

. (3)

Notice the UPRE solution can then be derived directly from (3).
Though SURE is equivalent to UPRE for problems where the solution can be written with

a linear transform, SURE provides an estimator for other types of models. Perhaps most
notably it can be used to derive an estimator for `1 regularization problems (as opposed to
Tikhonov `2 regularizations). See for example this case for the famous LASSO problem [6].

1It may still be possible to apply the approaches in case the assumption is not completely satisfied.
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Figure 2: A test problem showing that the estimator given by UPRE is accurate to the true
error (left plot), and the minimizing parameter values are nearly the same. On the right the
true solution is shown with several of the reconstructions for different values of λ. The code to
reproduce these images is provided after the references.

Alternatively, one can use the optimal `2 parameter found using a simpler UPRE approach to
obtain a suitable `1 parameter through the Bayesian formulation [3]. This approach is attractive
due to its simplicity.

Computational Hurdles

Evaluating (2) for the general case can be difficult due to the trace term for large scale imaging
problems. In particular, Bλ is rarely ever computed and stored in memory. Moreover the
product of this matrix with the A matrix would be a huge calculation, far more than computing
a solution. This difficulty can be circumvented using randomized statistical methods.

For example, for any square matrix M if x is a random vector with independent entries
mean zero and variance one, then E[xTMx] = trace(M). Hence, if we’d like to find the trace of
some product of several matrices, say A,B,C (also including inverses and so forth), though it is
unreasonable to compute the product of the matrices to find the trace, in principle we should be
able to compute xTABCx, with only three matrix vector multiplies. If we do this several times
for random vectors x and average the result, then we should obtain a good approximation for
the trace. Yet still this calculation can be as costly as computing the solution uλ, since say for
Tikhonov regularization we need the trace of ABλ, and Bλx = (ATA+ λTTT )−1x is computed
with an iterative method the same way the solution is computed. So it really depends on the
application and available computing power to determine if this is a useful approach.

Perhaps even more useful, for many important problems, such as denoising, deconvolution,
and Fourier reconstruction, the trace can even be computed analytically as shown in [3], which
provides a massive reduction in computation for Tikhonov regularization. In my opinion, this
really makes the approach most appealing for these types of applications, since it requires only
very careful coding and hand calculations, but in turn very few flops.
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A simple derivation of UPRE

Here equation (2) is proven. Let uλ = Bλb and b = Au+ ξ. Then

E‖Auλ −Au‖22 = E‖Auλ − (b− ξ)‖22
= ‖Auλ − b‖22 + E‖ξ‖22 + 2E〈ξ, Auλ − b〉
= ‖Auλ − b‖22 +mσ2 + 2E〈ξ, Auλ − b〉

Now we have to work a bit more to evaluate the last expectation: replace Auλ−b = (ABλ−I)b,
and then b = Au+ ξ to obtain

E〈ξ, Auλ − b〉 = E〈ξ, (ABλ − I)(Au+ ξ)〉
= E〈ξ, (ABλ − I)Au〉+ E〈ξ, (ABλ)ξ〉 − E‖ξ‖22
= σ2trace(ABλ)−mσ2

In the last line, we have used the simple fact that for any matrix M and i.i.d normal vector
ξ with variance σ2, that E[ξTMξ] = σ2trace(M). Combining this result with the first set of
equations completes the derivation.

Estimation of the noise variance, σ2

The methods of UPRE and SURE rely on knowledge of the noise variance σ2, while assuming
the distribution to be i.i.d. Gaussian. However, in [3] a method was proposed for estimating the
variance and empirically shown to converge very quickly. For UPRE, it relies on the following
fact: the value of σ which maximizes the probability of b in terms of expectations satisfies the
inequality

σ2 = ‖Auλ − b‖22/(m− trace(ABλ)).

Based on this equality, it was suggested to use a fixed point method for σ along with the
combination of the optimization of λ to be given by

σ2k+1 = ‖Au(λk)− b‖22/[m− trace(AB(λk))].

It is also possible to derive a fixed point method for λ from UPRE as well. We plan to
describe this in more detail in later work.

Derivation of SURE

Let A ∈ Rm×n, u ∈ Rn, b ∼ N(Au, σ2I). Let us start by considering a denoising problem,
so that b = u + ξ, ξ ∼ N(0, σ2I). Let uλ = uλ(ξ) be an estimator of u, dependent upon the
parameter λ, as a function of the random variable ξ. Then to obtain an estimator for ‖u−uλ‖22
begin with the following:

E‖u− uλ‖2 = E‖u− b+ b− uλ‖22
= E‖u− b‖22 + ‖b− uλ‖2 + 2E(u− b)T(b− uλ)

= nσ2 + ‖b− uλ‖2 − 2E ξT(b− uλ)

= −nσ2 + ‖b− uλ‖2 + 2E ξTuλ,

(4)

where, among other things, we have used E ξTb = nσ2. So we only need a statistical estimate
for E[ξTuλ(ξ)] to complete the estimator. This is where we need the help of Stein [4], whose
lemma says that for a random variable X ∼ N(µ, σ2) that E[(X−µ)f(X)] = σ2E[f ′(X)], which
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for simple functions can be easily derived using integration by parts. This leads us to

E[ξTuλ(ξ)] =
n∑
i=1

E ξiuλ(ξ)i = σ2
n∑
i=1

∂uλ(ξ)i
∂ξi

= σ2divuλ(ξ).

This leads to the SURE estimator as

F (λ) = E‖u− uλ‖2 = −nσ2 + ‖b− uλ‖2 + 2σ2
n∑
i=1

∂uλ(ξ)i
∂ξi

,

and an optimal λ satisfies

λ∗ = arg min
λ
‖b− uλ‖2 + 2σ2

n∑
i=1

∂uλ(ξ)i
∂ξi

If we’re not in the denoising case, and b = Au+ ξ for general A, then the same ideas lead us to
an alternative SURE estimator as

R̂ = E‖Au−Auλ‖2 = −nσ2 + ‖b−Auλ‖2 + 2σ2
n∑
i=1

∂Auλ(ξ)i
∂ξi

.

If uλ = (ATA+ λTTT )−1ATb, the Tikhonov solution, then

R̂ = −nσ2 + ‖b−Auλ‖2 + 2σ2trace(AH−1AT),

which is UPRE. Notice that everywhere that uλ is written as a function of ξ and differentiated
w.r.t. ξ, can be replaced with b and changes nothing. In other words

R̂ = E‖Au−Auλ‖2 = −nσ2 + ‖b−Auλ‖2 + 2σ2
n∑
i=1

∂Auλ(b)i
∂bi

References

[1] S. Ramani, Z. Liu, J. Rosen, J. Nielsen, and J. A. Fessler. Regularization parameter selection
for nonlinear iterative image restoration and MRI reconstruction using GCV and SURE-
based methods. IEEE Transactions on Image Processing, 21(8):3659–3672, 2012.

[2] T. Sanders and I. Arslan. Improved three-dimensional (3D) resolution of electron tomo-
grams using robust mathematical data-processing techniques. Microscopy and Microanaly-
sis, 23(6):1121–1129, 2017.

[3] T. Sanders, R. B. Platte, and R. D. Skeel. Maximum evidence algorithms for automated
parameter selection in regularized inverse problems. arXiv preprint arXiv:1812.11449, 2018.

[4] C. M. Stein. Estimation of the mean of a multivariate normal distribution. The Annals of
Statistics, pages 1135–1151, 1981.

[5] C. R. Vogel. Computational methods for inverse problems, volume 23. SIAM, 2002.

[6] H. Zou, T. Hastie, R. Tibshirani, et al. On the “degrees of freedom” of the lasso. The Annals
of Statistics, 35(5):2173–2192, 2007.

1 % simple smal l example f o r UPRE
2 % Important note : t h i s example i s f o r demonstrat ion purposes only . In
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3 % p r a c t i c e one cannot compute matrix inve r s e s , t race s , e t c . exact ly , and
4 % must in s t ead uses i t e r a t i v e methods
5 % A ”**” comment in the code below i n c a t e s a l i n e o f code that i s only
6 % reasonab l e f o r smal l problems such as t h i s example .
7
8 % wr i t t en by Toby Sanders
9 % August 11 , 2019

10
11 c l e a r ;
12 d = 500 ; % s i g n a l dimension
13 m = d ; % number o f samples
14 SNR = 5 ; % s i g n a l to no i s e r a t i o
15 k = 3 ; % order o f the r e g u l a r i z e r
16 mus = l i n s p a c e (−12 ,2 ,20) ; % log o f t e s t va lue f o r mu
17 mus = 10 .ˆmus ;
18 rng (705) ; % seed f o r r e p r o d u c i b i l i t y
19
20 % cons t ruc t t e s t s i g n a l and matrix
21 x = s i n (4* pi * l i n s p a c e (0 , 1 , d ) ') ; % s i g n a l
22 A = randn (m, d) /100 ; % sampling matrix with normal e n t r i e s
23 b = A*x ; % data vec to r
24 sigma = mean( abs (b ( : ) ) ) /SNR; % standard dev i a t i on
25 b = b+randn ( numel (b) ,1 ) * sigma ; % add no i s e to data
26
27 % s e t up r e c o n s t r u c t i o n problem
28 Ax = A*x ; % save Ax to compute t rue e r r o r
29 AtA = A'*A; % save A transpose A
30 T = ze ro s (d) ; % T i s the kth order r e g u l a r i z a t i o n operator
31 T( 1 : d+1:end ) = −1; T(d+1:d+1:end ) = 1 ; T( end , 1 ) = 1 ;
32 T = Tˆk /(2ˆ( k−1) ) ; % s c a l e the matrix
33 TtT = T'*T;
34
35 % loop over mus and obta in e s t imator
36 r e c s = ze ro s (d , numel (mus) ) ;
37 r e c s 2 = r e c s ;
38 t e r r = ze ro s ( numel (mus) ,1 ) ; Eerr = t e r r ;
39 f o r i = 1 : numel (mus)
40 t i k .mu = mus( i ) ;
41 H = AtA+TtT/ t i k .mu;
42 Hi = inv (H) ; % **
43 % compute s o l u t i o n f o r cur rent parameter
44 r e c s 2 ( : , i ) = H\(A'*b) ; % **
45 t e r r ( i ) = norm(Ax−A* r e c s 2 ( : , i ) , 2 ) ˆ2 ; % **
46 % eva luate the e s t imator
47 Eerr ( i ) = −m* sigma ˆ2 ...
48 + norm(A* r e c s 2 ( : , i )−b , 2 ) ˆ2 ...
49 + 2* sigma ˆ2* t r a c e (AtA*Hi ) ; % **
50 end
51 [ mmval ,mm] = min ( Eerr ) ; % best s o l u t i o n
52
53 %% plo t r e s u l t s
54 f i g u r e (87) ; hold o f f ;
55 l o g l o g (mus , t e r r , 'k' , ' l i n ew id th ' , 2 ) ; hold on ;
56 l o g l o g (mus , Eerr , 'r−−' , ' l i n ew id th ' , 2 ) ;
57 legend ({ ' t rue e r r o r : $\ | A u − Au \ lambda \ | 2 ˆ2$' , ...
58 'UPRE est imator : $E \ | A u − Au \ lambda \ | 2 ˆ2$'} , ...
59 ' i n t e r p r e t e r ' , ' l a t e x ' , ' f o n t s i z e ' , 16 , ' f ontwe ight ' , 'bold ' ) ;
60 x l a b e l ( 'value o f the r e g u l a r i z a t i o n parameter ' ) ;
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61 y l a b e l ( ' e r r o r ' ) ;
62 s e t ( gca , ' f ontwe ight ' , 'bold ' , ' f o n t s i z e ' , 16) ;
63 g r id on ; hold o f f ;
64
65 f i g u r e (88) ;
66 subplot ( 4 , 1 , 1 ) ; p l o t (x , ' l i n ew id th ' , 1 . 5 ) ; t i t l e ( ' t rue s i g n a l ' ) ;
67 s e t ( gca , ' f o n t s i z e ' , 14 , 'Xtick ' , [ ] ) ; a x i s ( [ 0 d −1 1 ] ) ;
68 subplot ( 4 , 1 , 2 ) ; p l o t ( r e c s 2 ( : ,mm) , ' l i n ew id th ' , 1 . 5 ) ;
69 t i t l e ( [ 'optimal s o l u t i o n accord ing to UPRE, $\ lambda = $' , ...
70 num2str ( 1 . / mmval) ] , ' i n t e r p r e t e r ' , ' l a t e x ' ) ;
71 s e t ( gca , ' f o n t s i z e ' , 14 , 'Xtick ' , [ ] ) ; a x i s ( [ 0 d −1 1 ] ) ;
72 subplot ( 4 , 1 , 3 ) ; p l o t ( r e c s 2 ( : , 3 ) , ' l i n ew id th ' , 1 . 5 ) ;
73 t i t l e ( [ ' s o l u t i o n f o r $\ lambda = $' , num2str ( 1 . / mus (3 ) , '%10.3 e' ) ] , ...
74 ' i n t e r p r e t e r ' , ' l a t e x ' ) ;
75 s e t ( gca , ' f o n t s i z e ' , 14 , 'Xtick ' , [ ] ) ; a x i s ( [ 0 d −1 1 ] ) ;
76 subplot ( 4 , 1 , 4 ) ; p l o t ( r e c s 2 ( : , end ) , ' l i n ew id th ' , 1 . 5 ) ;
77 t i t l e ( [ ' s o l u t i o n f o r $\ lambda = $' , num2str ( 1 . / mus( end ) ) ] , ...
78 ' i n t e r p r e t e r ' , ' l a t e x ' ) ;
79 s e t ( gca , ' f o n t s i z e ' , 14 , 'Xtick ' , [ ] ) ; a x i s ( [ 0 d −1 1 ] ) ;
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