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1 Part I: loosely tied together ideas

First, reviewing some concepts from the 1969 seminal paper ”Multiplier and Gradient Methods,”
by Magnus Hestenes, which is essentially the first formal introduction of the augmented Lagrangian
function. Second, discussed are some general concepts from Lagrange multiplier theory.

1.1 ”Multiplier and Gradient Methods,” by Magnus Hestenes

Problem: Find
min
x∈RN

f(x) subject to g(x) = 0.

Suppose x∗ is the true minimizer and that ∇g(x∗) 6= 0. Also suppose f, g ∈ C2.
We may consider the method of Lagrange multipliers, which says there exist a constant λ such

that
G = f + λg

satisfies ∇G(x∗) = 0, i.e. the two gradients are parallel at the minimizer. (To argue this, imagine
walking along a the contour of g = 0, in which the gradient of g is always perpendicular to this
contour. Furthermore, we have that ∇f(x∗) ·h = 0, where h is a vector that points in the direction
of the contour of g = 0, then ∇f is also perpendicular to the contour at x∗.). Moreover, (by the
”second derivative rule”), for all h 6= 0 such that

∇g(x∗) · h = 0,
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we have
hTH(G(x∗))h > 0,

where H denotes the Hessian. This implies that there exist a positive c such that

hTH(G(x∗))h+ c[∇g(x∗) · h]2 > 0,

for ALL h 6= 0. Setting

F = f + λg +
1

2
cg2 (1)

we see that
∇F (x∗) = ∇G(x∗) = 0,

hTH(F (x∗))h = hTH(G(x∗))h+ c[∇g(x∗) · h]2 > 0, h 6= 0.

In light of this, we see x∗ is an unconstrained local minimum to F .
Therefore, minimizing (1), is the minimization of the so called augmented Lagrangian Function.

Finding λ

Consider minimization of the penalty function

fn(x) = f(x) +
1

2
ng2(x),

whose minimizers are given by the sequence {xn}. A limit point, if it exists, is given by x∗. Moreover

0 = ∇fn(xn) + ng(xn)∇g(xn),

and so if ∇g(x∗) 6= 0, then λn = ng(xn) converges to λ.
Observe that

fn(xn) = f(xn) +
1

2
ng2(xn) ≤ fn(x∗) = f(x∗).

and if xn is sufficiently close to x∗, then (by the result in the previous section)

f(x∗) ≤ f(xn) + λg(xn) +
1

2
cg2(xn)

Combining the above two inequalities leads to

(n− c)g2(xn) ≤ 2λg(xn)

If ∇f(x∗) ≈ 0, then λ is fairly small, and in general xn = x∗ whenever n > c. In general this is
not the case, and for large values of n the method becomes sensitive to round-off errors in the term
ng2. Therefore we use the augmented Lagrangian function (1).

Observe that for some n iteration guess of λ given by λn the minimizer xn to F (x, λn) satisfies

∇F (xn, λn) = ∇f(xn) + (λn + cng(xn))∇g(xn).

By the ordinary Lagrange multiplier method, this suggests

λn+1 = λn + cng(xn).

Next we show how this is really just a minmax problem.
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1.2 More discussion on LM methodology

Consider again the general problem of finding

min
x∈RN

f(x) subject to g(x) = 0,

for which there exists a constant λ so that x∗ is a saddle point to the Lagrangian function

L(x, λ) = f(x) + λg(x).

In other words, ∇L(x∗, λ∗) = 0. As it turns out, under certain conditions the optimal point x∗ may
be obtained through the dual problem

max
λ

min
x
L(x, λ).

Define the dual function to be
v(λ) = min

x
L(x, λ).

Observe that the dual function satisfies v(λ) ≤ f(x∗) for all λ, hence

f(x∗) = max
λ

v(λ).

Consider solving the minmax problem using an alternation gradient decent/ascent method. This
iterative scheme looks like

xk+1 = xk − τ∇xL(xk, λk)

λk+1 = λk + γg(xk+1)
.

Notice the update on λ is the usual one...

A simple example

As a simple sanity check, I consider minimizing f(x, y) = 2x + y over the constraint h(x, y) =
x2 + y2 − 1 = 0. The minimizer is easily found to be (x, y) = (−2/

√
5,−1/

√
5). One may also find

that the right multiplier in this case is λ =
√

5/4. As a numerical test, one may then finally check
that these values satisfy the minmax problem.

1.3 Rigorous proof for first order condition for linear equality constraints

Consider the problem
min
x
f(x) s.t. Ax = b,

where A ∈ Rm×n, which has a local minimum at x∗. Let x̄ be any particular solution to Ax = b.
Then x = x̄+ p also satisfies the equality constraint for p ∈ Null(A). Let Z ∈ Rn×r be a basis for
the null space of A, so that p = Zv. Then we have the equivalent reduced minimization problem

min
v

(f(x̄+ Zv) = φ(v)) .
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Then it can be shown that the first order necessary condition is given by

0 = ∇φ(v∗) = ZT∇f(x̄+ Zv∗).

This is apparently call the reduced gradient or projected gradient.
Next consider decomposing the gradient at the optimizer as

∇f(x∗) = Zv∗ +ATλ∗.

Multiplying through by ZT and using the projected gradient condition we observe that

0 = ZT∇f(x∗) = ZTZv∗ + ZTATλ∗ = ZTZv∗ + 0 ∗ λ∗.

This implies that Zv∗ = 0, and hence returning back to decomposed gradient above we see that

∇f(x∗) = ATλ,

which is the Lagrange multiplier condition in the linear equality case, i.e.

∇f(x∗) =

m∑
i=1

λi∇gi(x∗)

2 Part II: Proximal form of ADMM

Consider the following minimization problem:

min
u
f(u) + g(u), (2)

which is equivalent to
min
u,v

f(u) + g(v), s.t. u = v. (3)

The second form has the following augmented Lagrangian function

L(u, v, λ) = f(u) + g(v) + λT (u− v) +
β

2
‖u− v‖22, (4)

which we find the minmax solution to as was shown earlier. To solve this we alternate minimization
over u and v. Interestingly, this algorithm may be interpreted as an alternating proximal gradient
algorithm. The proximal operator for an arbitrary function h and scalar γ > 0 is defined as

proxγh(x) = arg min
u
γh(u) +

1

2
‖u− x‖22.

Define ρ = λ/β and rewrite L as

L(u, v, λ) = f(u) + g(v) + βρT (u− v) +
β

2
‖u− v‖22 +

β

2
‖ρ‖22 −

β

2
‖ρ‖22

= f(u) + g(v) +
β

2
‖ρ+ u− v‖22 −

β

2
‖ρ‖22

(5)
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Then the minimization steps over u and v take the form

arg min
u
L(u, v, λ)

= arg min
u
f(u) +

β

2
‖u− (v − ρ)‖22

= proxf/β(v − ρ)

arg min
v
L(u, v, λ)

= arg min
v
g(v) +

β

2
‖v − (u+ ρ)‖22

= proxg/β(u+ ρ)

(6)

This is sometimes called the scaled form of ADMM. The update on λ (and hence ρ) is the usual
one:

λ← λ+ β(u− v)

ρ← ρ+ (u− v)
(7)

3 Part III: More rigorous theory

Below are mostly concepts from Bertsekas book title ”Nonlinear programming.”
Problem 1:

min
x
f(x) s.t. hi(x) = 0, i = 1, . . . ,m, (8)

whose local minimizer is x∗, and let h = (h1, . . . , hm).
Let ε > 0 be such that f(x∗) ≤ f(x) for all feasible x with the ε neighborhood of x∗, i.e. if

h(x) = 0 and ‖x− x∗‖ ≤ ε, then f(x∗) ≤ f(x).
Define S := {x | ‖x− x∗‖ ≤ ε},

F k(x) = f(x) +
k

2
‖h(x)‖22 +

α

2
‖x− x∗‖22,

and
xk = arg min

x∈S
F k(x),

It is easy to see that F k(xk) is bounded, since

F k(xk) = f(xk) +
k

2
‖h(xk)‖22 +

α

2
‖xk − x∗‖22 ≤ f(x∗), (9)

and hence
lim
k→∞

‖h(xk)‖22 → 0.

Therefore any limit point x of xk satisfies h(x) = 0. Furthermore, from (9) we have

f(xk) +
α

2
‖xk − x∗‖22 ≤ f(x∗),
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and taking the limit as k →∞ we obtain

f(x) +
α

2
‖x− x∗‖22 ≤ f(x∗).

Since h(x) = 0 and x ∈ S, then
f(x∗) ≤ f(x).

Combining the above two equations we see that x = x∗, hence xk → x∗.

Proposition 1. This is prop. 4.1.1. in Bertsekas book, which I abbreviate, and also exclude the
second order conditions.

There exist unique Lagrange multiplier vector λ∗ such that

∇f(x∗) +∇h(x∗)λ∗ = 0.

Proof. From the work above we have

0 = ∇F k(xk) = ∇f(xk) + k∇h(xk)h(xk) + α(xk − x∗) (10)

Solving for kh(xk) we obtain

kh(xk) = −(∇h(xk)T∇h(xk))−1∇h(xk)T (∇f(xk) + α(xk − x∗))

Taking the limit as k →∞ we obtain

λ∗ = −(∇h(x∗)T∇h(x∗))−1∇h(x∗)T∇f(x∗)

Taking the limit in (10) we obtain

∇f(x∗) +∇h(x∗)λ∗ = 0.

Problem 2 (ICP):

min
x
f(x)

s.t. hi(x) = 0, i = 1, . . . ,m

gj(x) ≤ 0, j = 1, . . . , r.

(11)

Define the Lagrangian function by

L(x, λ, µ) = f(x) +

m∑
i=1

λihi(x) +

r∑
j=1

µjgj(x)

= f(x) + λTh(x) + µT g(x)

(12)

Proposition 2 (First order KKT conditions). Let x∗ be a local minimum to ICP. Then there exists
unique Lagrange multipliers λ∗ and µ∗ such that

∇xL(x∗, λ∗, µ∗) = 0

µj ≥ 0, ∀j
µ∗j = 0, ∀j /∈ A(x∗),

(13)

where A(x∗) is the set of active constraints at x∗, i.e. j ∈ A(x) if gj(x) = 0.

6



Proof. All assertions follow from the previous proposition, except for µ∗j ≥ 0 for j ∈ A(x∗). Define

g+j (x) = max{0, gj(x)}. Define

F k(x) = f(x) +
k

2
‖h(x)‖22 +

k

2

r∑
j=1

(g+(x))2 +
α

2
‖x− x∗‖22,

and consider solving
xk = arg min

x∈S
F k(x),

where S = {x | ‖x−x∗‖ ≤ ε}, where ε is such that f(x∗) ≤ f(x) for all feasible x ∈ S. Note that the
gradient of (g+j (x))2 is 2g+j (x)∇gj(x). A similar argument to the equality constrained case shows

that xk → x∗ and the Lagrange multipliers are given by

λ∗i = lim
k→∞

khi(x
k), ∀i

µ∗j = lim
k→∞

kg+j (xk), ∀j.
(14)

Since g+j (xk) ≥ 0 we obtain µ∗j ≥ 0 for all j.

Remark: The condition µ∗j = 0 for all j /∈ A(x∗) can be written compactly as

µ∗jgj(x
∗) = 0 ∀j.

Duality: smooth convex f with linear constraints

Problem 3 (ICP) with linear constraints:

min
x
f(x)

s.t. Ex = d

Ax ≤ b,

(15)

with f smooth and convex. The Lagrangian for this problem is of course

L(x, λ, µ) = f(x) + λT (Ex− d) + µT (Ax− b).

Define
q(λ, µ) = inf

x
L(x, λ, µ).

Then problem 3 has the equivalent dual problem:

max
λ,µ

q(λ, µ) s.t. µ ≥ 0.

Proof. For all feasible x and µ ≥ 0, we have λT (Ex− d) = 0 and µT (Ax− b) ≤ 0, so that

q(λ, µ) ≤ f(x) + λT (Ex− d) + µT (Ax− b) ≤ f(x).

Taking the minimum over all feasible x on the right hand side we obtain

q(λ, µ) ≤ f(x∗),

hence it suffices to show that for certain µ ≥ 0, λ, that q(λ, µ) = f(x∗). Using the KKT condi-
tions/theorem, selecting the unique multipliers µ∗ and λ∗, we see this is achieved.
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