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The purpose of this paper is to give a brief overview of compressed sensing. I will discuss what compressed
sensing is, what is the purpose of it, and a few of the major theorems concerning compressed sensing.

Introduction
Compressed sensing, also known as compressed sampling or sparse sampling, is a technique for finding sparse
solutions to an underdetermined system of linear equations. In terms of linear algebra, compressed sensing
is a technique for finding a sparse solution c to the equation Ac = f , where A ∈ RM×N , c ∈ RN , f ∈ RM ,
and N � M . As is well known, there are infinitely many solutions to this problem. But we are concerned
with only sparse solutions c. This leads to the following problem:

min
c∈Rn

‖c‖`o such that Ac = f, (1)

where ‖c‖`0 := |{k : ck 6= 0, k = 1, 2, . . . , n}|, i.e. ‖c‖`o counts the number of nonzero entries in the vector c.
Unfortunately this problem is NP-hard, meaning no polynomial time algorithms exist to solve the problem.
However, if we are given some special conditions on A, it can be shown [1], [2] that we may instead solve the
problem

min
c∈Rn

‖c‖l1 such that Ac = f, (2)

where ‖c‖l1 :=
∑n
k=1 |ck|, and in solving this problem, we will obtain the same solution as solving (1). And

it is well known [3] that (2) can be solved using linear programming. Hence, the equivalence of solving (1)
and (2) is a crucial property and becomes our motivation.

Importance of compressed sensing
The work related to solving (1) and (2) has strong connections with the problem of recovering signals and
images from highly incomplete measurements. Common practice in recovering signals or images follows the
Shannon-Hartley theorem, which essentially states that in order to recover the signal the sampling rate must
be at least twice the maximum frequency present in the signal. This principle underlies most all signal
acquisition used in consumer audio and visual electronics, medical imaging devices, radio receivers, and so
on. Compressed sensing goes against this common wisdom, and asserts that we may instead recover most
signals and images from far fewer samples than suggested by the Shannon-Hartley theorem.

For a practical example, consider attempting to recover an image from only a small number of measurements.
Typical cameras record measurements of every pixel in the image, and then later compress the number of
measurments for memory purposes. Compressed sensing is an attempt to instead take a much smaller set of
measurements and construct the entire image from only the small set of measurements. One may think this
does not seem possible. However,if we consider only the set of realistic images that may be constructed from
the measurements, then the problem seems feasible. Most images in our world are not completely random,
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and there are many "uniformities." Hence, we rely on the idea that the image has a sparse representation
with respect to some basis. Thus with enough samples, we may have hope of reconstructing the image.
But how do we properly sample the image in order to reduce the number of overall measurements needed?
And even then, how do we estimate how many measurements that we will need for reconstruction? These
topics arise in the sections that follow and are strongly related to the "incoherence" of the sampling matrix A.

The above applications are stated here in the context of our problem: suppose we would like to recover
a discrete signal s ∈ Rn, given that As = f , where A ∈ RM×N is our sensing or sampling matrix and f is
our incomplete set of measurements. If s has a sparse representation with respect to some basis {ψi}Ni=1, so
that Ψc = s, where Ψ = [ψ1, ψ2, ..., ψN ] and c is sparse, then we may solve

min
c∈RN

‖c‖`1 such that AΨc = f,

which is equivalent to solving (2).

Conditions on the sampling matrix A

For convenience, we will introduce some notation that will be used throughout the remainder of the paper.
Suppose we have a S-sparse vector c ∈ RN , meaning that c is supported on some set T ⊂ {1, 2, . . . , N} with
|T | ≤ S. Also, suppose that we are given A ∈ RM×N as before. The set {1, 2, . . . , N} will be denoted by
N . AT will denote the submatrix of A with only the column indices j ∈ T . The notation aj will be used to
denote the jth column of A. Likewise cj will denote the jth entry of any vector c, and cT denotes the vector
containing only the entries in which c is supported (those entries of indices j ∈ T ). Since c is supported on
T , we then have

Ac = ATxT =
∑
j∈T

cjaj ,

As will be shown, assuming that c is at most S-sparse, in order for (2) to recover c that we desire, we need A
to be such that AT obeys some "restricted isometry properties" for all possible sets T , where |T | ≤ S. The
formal definition of the "restricted isometry properties" are given below.

Definition 1 (Restricted isometry constants). Let A ∈ RM×N be the matrix with a finite collection of
vectors (aj)j∈N ∈ RM as columns. For every integer 1 ≤ S ≤ |N |, we define the S-restricted isometry
constant δS to be the smallest quantity such that AT obeys

(1− δS)‖c‖2 ≤ ‖AT c‖2 ≤ (1 + δS)‖c‖2 (3)

for all subsets T ⊂ N of cardinality of at most S, and all real coefficients (cj)j∈T . Similarly, we define the
S, S′-restricted orthogonality constants θS,S′ for S + S′ ≤ |N | to be the smallest quantity such that

|〈AT c, AT ′c′〉| ≤ θS,S′‖c‖‖c′‖ (4)

holds for all disjoint sets T, T ′ ⊂ N of cardinality |T | ≤ S and |T ′| ≤ S′.

We will see that the smaller these constants are, the more likely it is that solving (2) is the same solution
as solving (1), which is exactly what we would like.

Informally, the restricted isometry contants δS tells us that the mapping of any vector under AT must
preserve the length of the vector with respect to some tolerance. For some insight to why this is important,
suppose for example that there exists a set T , |T | ≤ S and a vector c, with cT 6= 0 such that AT cT = 0.
Hence, δ|T | = 1, and AT does not preserve the length of vectors. Then

∑
j∈T cjaj = 0, and since cT 6= 0

there exists disjoint sets T1 and T2, so that T1 ∪ T2 = T and

f =
∑
j∈T1

cjaj = −
∑
j∈T2

cjaj 6= 0.
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Thus the nonzero vector f , which is supported on T , has two distinct sparse representations. Thus given
Ac = f , where f is the same f described above, we have two unique sparse solutions c = (cj)j∈T1 and
c′ = (cj)j∈T2

. Then how do we know which is the sparse solution that we are looking for? Thus we need A
to have the property that δS < 1 for all subsets T with |T | ≤ S.

The importance of the restricted orthogonality constants are less obvious though. Suppose we are given
two vectors c1, c2 ∈ RN such that c1 is supported on a set T1 disjoint from T2, the set support of c2, with
|T1| ≤ S and |T2| ≤ S′. If we then have θS,S′ � 1, then we may conclude that Ac1 = f1 and Ac2 = f2 are
"approximately orthogonal." Essentially, having two vectors with disjoint support will give us very samples
f1 and f2, thus we can hope that our sparse solution c to Ac = f is unique. Of course if the columns of A
are orthogonal then it is easy to see that θS,S′ = 0, but this isn’t possible since there are many more columns
than rows. For the remainder of the paper we will use θS to denote θS,S .

Lemma 2. We have θS,S′ ≤ δS+S′ ≤ θS,S′ +max(δS , δ
′
S) for all S, S′.

Proof. We first show that θS,S′ ≤ δS,S′ . We may normalize (3) and (4) to obtain AT obeying

(1− δS) ≤ ‖ATu‖ ≤ (1 + δS) for all ‖u‖ = 1

and
|〈ATu,AT ′u′〉| ≤ θS,S′ for all ‖u‖ = ‖u′‖ = 1.

Thus, showing θS,S′ ≤ δS,S′ is equivalent to showing that

|〈
∑
j∈T

cjaj ,
∑
j′∈T ′

cj′aj′〉| ≤ δS+S′

whenever |T | ≤ S, |T ′| ≤ S′, T, T ′ are disjoint, and
∑
j∈T |cj |2 =

∑
j′∈T ′ |cj′ |2 = 1. Here ‖ · ‖ := ‖ · ‖l2 . Now

(3) gives
2(1− δS+S′) ≤ ‖

∑
j∈T

cjaj +
∑
j′∈T ′

cj′aj′‖2 ≤ 2(1 + δS+S′)

as well as
2(1− δS+S′) ≤ ‖

∑
j∈T

cjaj −
∑
j′∈T ′

cj′aj′‖2 ≤ 2(1 + δS+S′).

The claim then follows from the parallelogram identity

|〈
∑
j∈T

cjaj ,
∑
j′∈T ′

cj′aj′〉| =
‖
∑
j∈T cjaj −

∑
j′∈T ′ cj′aj′‖2 + ‖

∑
j∈T cjaj +

∑
j′∈T ′ cj′aj′‖2
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It remains to show that δS+S′ ≤ θS + max(δS , δS′). Again by normalizing (3), we see that ‖AT0u‖2 ≤
(1 + δS+S′) for all ‖u‖l2 = 1 and sets T0 where |T0| ≤ S. From here it suffices to show that

|〈
∑
j∈T0

ujaj ,
∑
j∈T0

ujaj〉 − 1| ≤ θS + max(δS , δS′).

To prove this property, partition T0 as T0 = T ∪T ′ where |T | ≤ S and |T ′| ≤ S′ and write
∑
j∈T u

2
j = α and∑

j∈T ′ u2j = 1− α. Then (3) and (4) give the following

(1− δS)α ≤〈
∑
j∈T

ujaj ,
∑
j∈T

ujaj〉 ≤ (1 + δS)α

(1− δS′)(1− α) ≤〈
∑
j∈T ′

ujaj ,
∑
j∈T ′

ujaj〉 ≤ (1 + δS′)(1− α)

|〈
∑
j∈T

ujaj ,
∑
j′∈T ′

uj′aj′〉| ≤ θS,S′α1/2(1− α)1/2.
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Now, adding the equations above we obtain

〈
∑
j∈T

ujaj ,
∑
j∈T

ujaj〉+ 〈
∑
j∈T ′

ujaj ,
∑
j∈T ′

ujaj〉+ |〈
∑
j∈T

ujaj ,
∑
j′∈T ′

uj′aj′〉|

≤(1 + δS)α+ (1 + δS′)(1− α) + θS,S′α1/2(1− α)1/2

Hence

|〈
∑
j∈T0

ujaj ,
∑
j∈T0

ujaj〉 − 1| ≤ δSα+ δS′(1− α) + 2θS,S′α1/2(1− α)1/2

≤ max(δS , δS′) + θS,S′ ,

and the proof is complete. Here we use the fact that α1/2(1− α)1/2 ≤ 1/2 for 0 ≤ α ≤ 1.

Lemma 3. Suppose that S ≥ 1 is such that δ2S < 1, and let T ⊂ N be such that |T | ≤ S. Let f := AT c for
some arbitrary |T |-dimensional vector c. Then the set T and the coefficients (cj)j∈T can be reconstructed
uniquely from knowledge of the vector f and the a′js.

Proof. Suppose instead that f has two distinct sparse representation so that f = AT c = AT ′c′ where
|T |, |T ′| ≤ S. Then define a vector d so that

dj =


cj − c′j for j ∈ T ∩ T ′

cj for T − T ′

c′j for T ′ − T.

Then it is easy to see AT∪T ′d = 0. Using (3), the fact that δ2S < 1 and |T ∪ T ′| ≤ 2S, we may conclude
that ‖d‖ = 0, contradicting that the representations were unique.

Main results
The previous lemma is only an abstract existence argument, and gives us no way to go about recovering
T and cj from f . The theorem that follows below was given by Emmanuel Candés and Terence Tao in
2004, [4]. The theorem imposes stronger conditions on the restricted isometry and orthogonality constants
of the sensing matrix than that of the previous lemma. With these conditions we are then able to show the
equivalence of solving (1) and (2).

Theorem 4. Suppose that S ≥ 1 is such that

δS + θS + θS,2S < 1, (5)

and let c be a real vector supported on a set T ⊂ N obeying |T | ≤ S. Put f := Ac(= AT cT ). Then c is the
unique minimizer to

min ‖d‖l1 such that Ad = f. (6)

In order to prove Theorem 4 we will need a Lemma 5 Lemma 6. We will first summarize the main results
of these lemmas so that we may prove Theorem4 directly. As will be seen d is the unique minimizer to (6)
if AT has full rank and if one can find a vector ω with the two properties
(i)〈ω, aj〉 = sign(dj) for all j ∈ T,
(ii)|〈ω, aj〉| < 1 for all j /∈ T
We will now use these two facts to prove Theorem 4.
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Proof. We know there must exist at least one unique minimizer d to (6), and we need to show that d = c.
Since d is the minimizer, we have

‖d‖l1 ≤ ‖c‖l1 =
∑
j∈T
|cj |. (7)

Now take an ω obeying (i) and (ii), we then have

‖d‖l1 =
∑
j∈T
|cj + (dj − cj)|+

∑
j /∈T

|dj |

≥
∑
j∈T

sign(cj)(cj + (dj − cj)) +
∑
j /∈T

dj〈ω, aj〉

=
∑
j∈T
|cj |+

∑
j∈T

(dj − cj)〈ω, aj〉+
∑
j /∈T

dj〈ω, aj〉

=
∑
j∈T
|cj |+ 〈ω,

∑
j∈N

djaj −
∑
j∈T

cjaj〉

=
∑
j∈T
|cj |+ 〈ω, f − f〉

=
∑
j∈T
|cj |

Comparing with (7) we see that all of the above inequalities are actually equalities. Now using (ii), we can
see that the second line in the set of inequalities above would be a strict inequality if there exists some j /∈ T
so that dj 6= 0. Thus dj = 0 for all j /∈ T and AT dT = f = AT cT . So by Lemma 3 we can conclude that
d = c.

The following are the two lemmas needed to show (i) and (ii)

Lemma 5. Let S, S′ ≥ 1 be such that δS < 1, and c be a real vector supported on T ⊂ N such that |T | ≤ S.
Then there exists a vector ω such that 〈ω, aj〉 = cj for all j ∈ T . Furthermore, there is an "exceptional set"
E ⊂ N which is disjoint from T , of size at most |E| ≤ S′, and with the properties

|〈ω, aj〉| ≤
θS,S′

(1− δS)
√
S′
‖c‖ for all j /∈ T ∪ E

and ∑
j∈E
|〈ω, aj〉|2

1/2

≤ θS
1− δS

‖c‖.

In addition, ‖ω‖ ≤ K‖c‖ for some constant K > 0 dependent only upon δS.

Proof. Let A∗T be the adjoint transformation of AT . Then it is easy to see that A∗Tω = (〈ω, aj〉)j∈T . From
linear algebra we know that

sup
c
‖AT c‖22 = σ2

max(AT ) = λmax(A∗TAT ), and

inf
c
‖AT c‖22 = σ2

min(AT ) = λmin(AT ∗AT ),

where σmax(AT ) and σmin(AT ) denote the largest and smallest singular value of AT and λmax(A∗TAT ) and
λmin(A∗TAT ) denote the largest and smallest eigenvalues of A∗TAT . Hence, combining (3) with these facts
gives

1− δS ≤ λmin(A∗TAT ) ≤ λmax(A∗TAT ) ≤ 1 + δS .
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Since δ|T | < 1 we have λmin(A∗TAT ) > 0, hence A∗TAT is invertible with

‖(A∗TAT )−1‖2 = sup
c
‖(A∗TAT )−1c‖2 =

1

σ2
min(AT

≤ 1

1− δS
. (8)

The second equality in the line above follows from the fact that the singular values of A∗T coincide with
the singular values of AT , and that the singular values of the inverse of any matrix M are just the inverse
of the singular values of M . Also note that ‖AT (A∗TAT )−1‖ ≤ ‖AT ‖‖(A∗TAT )−1‖ ≤

√
1+δS
1−δS and set ω :=

AT (A∗TAT )−1cT . It is then clear that A∗Tω = cT , i.e. 〈ω, aj〉 = cj for all j ∈ T . Moreover, ‖ω‖ ≤ K‖cT ‖
with K =

√
1+δS
1−δS . Thus we have established the first and last parts of the theorem. Now, if T ′ is any set in

N disjoint from T with |T ′| ≤ S′ and dT ′ = (dj)j∈T is any sequence of real numbers, then basic properties
of the adjoint,(4), and (8) give

|〈A∗T ′ω, dT ′〉| = |〈ω,AT ′dT ′〉|
= |〈AT (A∗TAT )−1cT , AT ′dT ′〉|
≤ θS,S′‖(A∗TAT )−1cT ‖‖dT ′‖

≤ θS,S′

1− δS
‖cT ‖‖dT ′‖.

Choosing dT ′ = A∗T ′ω, the above gives

‖A∗T ′ω‖ =

∑
j∈T ′

|〈ω, aj〉|2
1/2

≤ θS,S′

1− δS
‖cT ‖, (9)

whenever T ′ ⊂ N\T and |T ′| ≤ S′. If we set

E := {j ∈ N\T : |〈ω, aj〉| >
θS,S′

(1− δS)
√
S′
‖cT ‖},

then the claim is that E must be such that |E| ≤ S′. For a contradiction, suppose to the contrary that
|E| > S′. Then take any subset of T ′ of E with cardinality S′. Then we have∑

j∈T ′

|〈ω, aj〉|2
1/2

>

∑
j∈T ′

θ2S,S′

(1− δS)2S′
‖cT ‖2

1/2

=
θS,S′

(1− δS)
‖cT ‖,

which contradicts (9). This completes the proof.

Lemma 6. Let S ≥ 1 be such that δS + θS,2S < 1 and let c be a real vector supported on T ⊂ J obeying
|T | ≤ S. Then there exists a vector ω such that 〈ω, aj〉 = cj for all j ∈ T . Furthermore, ω obeys

|〈ω, aj〉| ≤
θS

(1− δS − θS,2S)
√
S
‖c‖ for all j /∈ T.

Proof. We may scale c so that
∑
j∈T |cj |2 =

√
S. We will use Lemma 5 inductively to create a sequence of

sets Tn and a sequence of vectors ωn.
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Let T0 := T . Taking S′ = S, then applying Lemma 5, we can find a vector ω1 and an "exceptional set"
T1 ⊂ N such that

T0 ∩ T1 = ∅
|T1| ≤ S

〈ω1, aj〉 = cj for all j ∈ T0

|〈ω1, aj〉| ≤
θS

1− δS
for all j /∈ T0 ∪ T1

(
∑
j∈T1

|〈ω1, aj〉|2)1/2 ≤ θS
1− δS

√
S

‖ω1‖ ≤ K.

Now we will apply Lemma 5 inductively. For all n ≥ 1, the set T described in Lemma 5 will be Tn ∪T0. The
vector c from the lemma will now contain the entries cj = 〈ωn, aj〉 for j ∈ Tn, and cj = 0 for j ∈ T0. Finally
the set S′ from the lemma will be S. Thus by Lemma 5 there exists an "exceptional set" Tn+1 and a vector
ωn+1 with the following properties

(Tn ∪ T0) ∩ Tn+1 = ∅
|Tn+1| ≤ S

〈ωn+1, aj〉 = 〈ωn, aj〉 for all j ∈ Tn
〈ωn+1, a+ j〉 = 0 for all j ∈ T0

|〈ωn+1, aj〉| ≤ ‖c‖
θS,2S

1− δS
≤ θS

1− δS

(
θS,2S

1− δS

)n
for all j /∈ Tn ∪ (T0 ∪ Tn+1)

(
∑

j∈Tn+1

|〈ωn+1, aj〉|2)1/2 ≤ θS
1− δS

(
θS,2S

1− δS

)n√
S

‖ωn+1‖ ≤
(

θS
1− δS

)n−1
K

By hypothesis, we have θS,2S

1−δS < 1. Thus if we define

ω :=
∞∑
n=1

(−1)n−1ωn

then the series is absolutely convergent, and, therefore, ω is a well-defined vector. We now study the
coefficients

〈ω, aj〉 =

∞∑
n=1

(−1)n−1〈ωn, aj〉 (10)

for j ∈ N . First consider j ∈ T0. From the construction 〈ω1, aj〉 = cj (here we are refering to the cj from
the original vector c, not the unductively defined cj) and 〈ωn, aj〉 = 0 for all n ≥ 2, so then it is clear that

〈ω, aj〉 = cj for all j ∈ T0.

Second, fix j with j /∈ T0 and we will consider the set of coefficients given by Ij := {n ≥ 1 : j ∈ Tn}. By
construction Tn and Tn+1 disjoint, so the integers in each Ij cannot be consecutive. Now ifn ∈ Ij , then
by definition j ∈ Tn, and by construction we have 〈ωn+1, aj〉 = 〈ωn, aj〉. Due to the alternation of sign, it
follows that the n and n+ 1 terms of (10) cancel each other, and we are left with

〈ω, aj〉 =
∑

n≥1;n,n−1/∈Ij

(−1)n−1〈ωn, aj〉. (11)
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Lastly, if n, n − 1 /∈ Ij and n 6= 0, then again by construction we have j /∈ Tn ∪ Tn−1 and |〈ωn, aj〉| ≤
θS

1−δS

(
θS,2S

1−δS

)n−1
. Thus from (11) we obtain

|
∑

n≥1;n,n−1/∈Ij

(−1)n−1〈ωn, aj〉| ≤
∑

n≥1;n,n−1/∈Ij

|(−1)n−1〈ωn, aj〉|

≤ θS
1− δS

∞∑
n=1

(
θS,2S

1− δS

)n−1
=

θS
1− δS

(
1

1− θS,2S

1−δS

)
=

θS
1− δS − θS,2S

.

Recalling the ‖c‖ =
√
S, the proof is complete.

To see how Lemma 6 gives us (i) and (ii), take c̃ = sign(c) and apply the lemma to c̃. Then (i) follows
immediately. To realize (ii) we simply note that ‖c̃‖ =

√
|T | and so

|〈ω, aj〉| ≤
θS

(1− δS − θS,2S)
√
S
‖c̃‖

=
θS

1− δS − θS,2S

√
|T |
S

≤ θS
1− δS − θS,2S

.

Given that δS + θS + θS,2S < 1, the last line above is less than 1, therefore (ii) holds.

Now this leads us to a major issue. If our sensing matrix has good restricted isometry constants, then
we may use `1 minimization for our problem. But how do we construct these sensing matrices so that they
have good isometry constants? It turns out that just using randomness to create these matrices usually
gives good results. In particular, it can be seen [4] that with overwhelming probablility, Gaussian random
matrices have good isometry constants.
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