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Abstract

In this short document, I begin by briefly introduction image sharpening and comparing this with
deconvolution with Wiener filtering. Then I show how the two could be made equivalent, i.e. given a
particular sharpening method, there exists a PSF such that deconvolution with that PSF via Wiener
filtering is equivalent to the sharpening. Even more striking, I show that Laplacian image sharping
(sharpening with the Laplace operator) is approximately equivalent to Wiener filtering with a PSF taken
from a Laplacian distribution. It is simply a coincidence that the name ”Laplace” shows up in these
equivalent methods. I am unaware if any of this is original work, but I was unable to locate any of it.

1 Image Sharpening Vs. Deconvolution

A common image sharpening and edge enhancement technique is one which adds in a high pass filter of
the image to the original image. This is often call unsharp masking for one reason or another, but I refer
to it as Laplacian sharpening. To describe it, let’s call the original image say u and let ∆ denote the
Laplace operator. Since the Laplace operator is a differential operator, its application can be represented by
convolution with a kernel, we will call g. Then the sharpened image, v, takes the following forms

v(α) = u+ α∆u

= u+ αg ∗ u
= (δ + αg) ∗ u
= F−1{(1 + αĝ) · û},

(1)

where F is the 2D discrete Fourier transform, and the ”hats” denote the Fourier transforms of the images.
The parameter α > 0 determines the amount of sharpening, and typically takes on values roughly in the
interval [0, 3] in my experience.

An alternative to image sharpening is deconvolution, which are both forms of high pass filters. Deconvo-
lution is more well founded for restoring images known to contain blur, while sharpening is typically used to
visually enhance ordinary image that may or may not be corrupted. For deconvolution problems, the image
data is assumed to take the form

u = v ∗ h+ ε,

where h is some point spread function (PSF) that has blurred or ”unsharpened” v. Then v may be re-
covered or estimated by deconvolution. For example, a simple Wiener deconvolution (in Fourier domain
representation) takes the form

v̂ = û · ĥ

|ĥ|2 + λ
, (2)

which can be formally derived from various models in various ways.
Below, I argue that Wiener deconvolution and Laplacian sharpening are essentially equivalent. Let’s take

an ordinary Wiener deconvolution of an image u given a point spread function h. Comparing the Wiener
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filter in (2) with that in the last line of (1), the Wiener filter and sharpening filter are equivalent if

(1 + αĝ) =
ĥ

|ĥ|2 + λ
,

or equivalently

(1 + αĝ)|ĥ|2 − ĥ+ λ(1 + αĝ) = 0. (3)

Letting

a = (1 + αĝ)

b = −1

c = λ(1 + αĝ),

(4)

then (3) is re-written once more as

a|ĥ|2 + bĥ+ c = 0, (5)

which looks a lot like an ordinary quadratic equation. Hence, given a chosen α and λ, we can just use the
quadratic formula to find h. If we define z = 1 + alphaĝ, then this leads to h as

ĥ =
1

2z
±
√

1− 4z2λ

2z
.

However, there are a few constraints to consider. We need ĥ to be real valued. This is because the Laplacian
filter is symmetric, hence for the equivalence to hold, h should also be symmetric. If h is symmetric then is
Fourier transform is real. Looking back at the solution for ĥ and using the quadratic formula, this imposes
the constraint

λ(1 + αĝ)2 ≤ 1/4.

This is interesting because I am accustomed to having no regularization when Laplacian sharpening, and
the constraint listed above says we can find a corresponding Wiener filter so long as α and λ are the appropri-
ate sizes. However, after more thought, a Laplacian sharpening does implicitly contain some regularization
when compared with a standard deconvolution with no regularization, because the Laplacian sharpening
doesn’t blow up, figuratively speaking, whereas dividing by the PSF directly to deconvolve typically would.

1.1 Laplace Sharpening leads to Wiener Filtering with a Laplace Distribution

Let z = 1 + αĝ. Then looking at (3) and (5) we see that

ĥ =
1

2z
±
√

1− 4z2λ

2z
=

1

2z
±
√

1

4z2
− λ.

If λ and z are small, then the first solution is approximately

ĥ ≈ 1

z
.

It can be shown that for the 1D case (and more or less the same in 2D) that we have the Fourier transform
pair

g = [−1, 2,−1]←→ ĝξ = 4 sin2(πξ/N).

To show this, we just need to make sure g is centered properly so it is symmetric and ĝ is real, and so forth.
In any case, this would make

ĥξ ≈
1

1 + 4α sin2(πξ/N)
.

I believe this may be the Fourier transform of a discrete Laplacian distribution. In the continuous case, the
Fourier transform of a discrete Laplacian distribution (ignoring the constants and variances) is roughly

f̂(ξ) =
1

1 + ξ2
,
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so it’s close at least.
Here goes the formal proof... let z ∈ RN be given by

z(x) = e−β|x|, for x = −N/2,−N/2 + 1, . . . , N/2− 1.

Then

ẑk =

N/2−1∑
x=−N/2

e−β|x|e−i2πkx/N

= −1 + e−βN/2e−iπk +

N/2−1∑
x=0

e−βx
(
e−i2πkx/N + ei2πkx/N

) (6)

Here we have peeled the largest magnitude term, x = −N/2 , out of the sum, and doubled the x = 0 term,
which is gives rise to the extra −1. For N even only modestly large, we can set the sum to go to infinity,
which only introduces error of O(e−βN/2). This leads to

ẑk ≈ −1 +
∞∑
x=0

e−βx
(
e−i2πkx/N + ei2πkx/N

)
= −1 +

1

1− e−(β+i2πk/N)
+

1

1− e−(β−i2πk/N)

(7)

To simplify this, we first work out the common denominator and simplify:

(1− e−(β+i2πk/N))(1− e−(β−i2πk/N))

= 1 + e−2β − e−β(e−i2πk/N + ei2πk/N )

= 1 + e−2β − e−β · 2 · cos (2πk/N)

= 1 + e−2β − 2e−β + 2e−β − e−β · 2 · cos (2πk/N)

= (1− e−β)2 + 4e−β sin2 (πk/N)

(8)

In a similar fashion, we sort out the numerator:

(1− e−(β+i2πk/N)) + (1− e−(β−i2πk/N))

= 2− e−β(e−i2πk/N + ei2πk/N )

= 2− 2e−β cos(2πk/N)

= 2− 2e−β + 2e−β − 2e−β cos(2πk/N)

= 2(1− e−β) + 4e−β sin2(πk/N)

(9)

Putting it all together we have

ẑk ≈ −1 +
2(1− e−β) + 4e−β sin2(πk/N)

(1− e−1)2 + 4e−β sin2 (2πk/N)

=
2(1− e−β)− (1− e−β)2

(1− e−β)2 + 4e−β sin2 (πk/N)

=
1− e−2β

(1− e−β)2 + 4e−β sin2 (πk/N)

= C
1

1 + 4α sin2 (πk/N)
,

(10)

where

C =
1− e−2β

(1− e−β)2
, α =

e−β

(1− e−β)2
.
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Figure 1: Example in 1D. Wiener filter PSF (middle and right) that is derived from a Laplacian sharpening
filter (left). Interestingly, the log scale plot of the PSF shows that it is perhaps a Laplacian distribution.
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