Whitney's Theorem

Toby Sanders
University of South Carolina

April 2012

Theorem 1 (Whitney, 1957). Let $0<p \leq \infty, f \in L_{p}[a, b]$, and $k \geq 1$. Then there exists a polynomial $Q \in P_{k-1}$ such that

$$
\|f-Q\|_{L_{p}[a, b]} \leq c \omega_{k}\left(f ; \frac{b-a}{k}\right)_{p}
$$

where $c=c(k, p)$.
We will be interested in the case $0<p<1$. The case whenever $1 \leq p \leq \infty$ is well known. We do give the proof of $p=\infty$, as well as the case when $k=1,0<p<\infty$, because they are both needed in the proof for $0<p<1$. We note here that a simple change of variables shows that it is sufficient to prove the theorem only in the case $[a, b]=[0,1]$. Therefore for the remainder of the paper we are always in $[0,1]$.

Proof in the case $p=\infty$. Assume $f \in L_{\infty}(0,1)$. We shall make use of the Steklov function, $f_{k, h}$, as an intermediate approximation:

$$
f_{k, h}(x)=\frac{1}{h^{k}} \int_{0}^{h} \int_{0}^{h} \cdots \int_{0}^{h} \sum_{v=1}^{k}(-1)^{v+1}\binom{k}{v} f\left(x+v\left(y_{1}+\cdots y_{k}\right) / k\right) d y_{1} \cdots d y_{k}
$$

As we have seen before,

$$
\begin{align*}
\left\|f-f_{k, h}\right\|_{L_{\infty}[0,1]} & \leq \omega_{k}(f ; h)_{\infty}, \tag{1}\\
\left\|f_{k, h}^{(k)}\right\|_{L_{\infty}[0,1]} & \leq c(k) h^{-k} \omega_{k}(f ; h)_{\infty} \tag{2}
\end{align*}
$$

Let $x_{0} \in[0,1]$ and set

$$
Q(x)=\sum_{v=0}^{k-1} f_{k, h}^{(v)}\left(x_{0}\right) \frac{\left(x-x_{0}\right)^{v}}{v!}
$$

i.e. $Q(x)$ is the (k-1)st order Taylor expansion of $f_{k, h}$ about x_{0} and $Q(x) \in P_{k-1}$. Moreover, it can easily be seen using induction on k that

$$
f_{k, h}(x)-Q(x)=\frac{1}{(k-1)!} \int_{0}^{x-x_{0}}\left(x-x_{0}-s\right)^{k-1} f_{k, h}^{(k)}\left(x_{0}+s\right) d s
$$

hence

$$
\left\|f_{k, h}-Q\right\|_{L_{\infty}[0,1]} \leq\left\|f_{k, h}^{(k)}\right\|_{L_{\infty}[0,1]}
$$

From this estimate, (1) and (2), setting $h=1 / k$ we get

$$
\|f-Q\|_{\infty} \leq\left\|f-f_{k, h}\right\|_{\infty}+\left\|f_{k, h}-Q\right\|_{\infty} \leq c(k) \omega_{k}(f, 1 / k)_{\infty} .
$$

Lemma 2. Let $f \in L_{p}[a, b], 0<p<\infty$. Then there exists a constant c such that

$$
\begin{align*}
\|f-c\|_{L_{p}[a, b]}^{p} & \leq \frac{1}{b-a} \int_{a}^{b} \int_{a}^{b}|f(x)-f(y)|^{p} d x d y \tag{3}\\
& =\frac{2}{b-a} \int_{0}^{b-a} \int_{a}^{b-t}|f(x+t)-f(x)|^{p} d x d t \leq 2 \omega_{1}(f ; b-a)_{p}^{p} \tag{4}
\end{align*}
$$

Proof. Consider the function

$$
\phi(y)=\int_{a}^{b}|f(x)-f(y)|^{p} d x, \quad y \in[a, b] .
$$

Then clearly there exists $y_{0} \in[a, b]$ such that

$$
\phi\left(y_{0}\right) \leq \frac{1}{b-a} \int_{a}^{b} \phi(y) d y
$$

Therefore, if we set $c=f\left(y_{0}\right)$ we obtain

$$
\begin{align*}
\int_{a}^{b}|f(x)-c|^{p} d x & \leq \frac{1}{b-a} \int_{a}^{b} \int_{a}^{b}|f(x)-f(y)|^{p} d x d y \tag{5}\\
& =\frac{1}{b-a}\left(\int_{a}^{b} \int_{a}^{x}|f(x)-f(y)|^{p} d y d x+\int_{a}^{b} \int_{x}^{b}|f(x)-f(y)|^{p} d x d y\right)
\end{align*}
$$

We shall handle each of the integrals above. For the seconde integral, using a substitution $y-x=u$ and then switching the order of integration, we obtain

$$
\begin{align*}
\int_{a}^{b} \int_{x}^{b}|f(x)-f(y)|^{p} d y d x & =\int_{a}^{b} \int_{0}^{b-x}|f(x)-f(u-x)|^{p} d u d x \\
& =\int_{0}^{b-a} \int_{a}^{b-u}|f(u)+f(u+x)|^{p} d x d u \tag{6}
\end{align*}
$$

Similarly for the first integral, with just one extra substituion, we obtain

$$
\begin{align*}
\int_{a}^{b} \int_{a}^{x}|f(x)-f(y)|^{p} d y d x & =\int_{a}^{b} \int_{0}^{x-a}-|f(x)-f(x-u)|^{p} d u d x \\
& =\int_{0}^{b-a} \int_{u+a}^{b}|f(x)-f(x-u)|^{p} d x d u \\
& =\int_{0}^{b-a} \int_{a}^{b-u}|f(w+u)-f(w)|^{p} d w d u \tag{7}
\end{align*}
$$

Combining (5), (6), and (7) completes the proof.
Lemma 3. Let $f \in L_{p}[0,1], 0<p \leq 1$. Then for every natural number $n \geq 1$ there exists a step-function φ_{n} with jumps at the points, $i / n=x_{i}, i=1, \ldots, n-1$, such that

$$
\left\|f-\varphi_{n}\right\|_{p}^{p} \leq 2 n \int_{0}^{1 / n} \int_{0}^{1-t}|f(x+t)-f(x)|^{p} d x d t, \quad i=1, \ldots, n
$$

Proof. By lemma 2 there exist constants $c_{i}, i=1, \ldots, n$ such that

$$
\int_{x_{i-1}}^{x_{i}}\left|f(x)-c_{i}\right|^{p} d x \leq 2 n \int_{0}^{1 / n} \int_{x_{i-1}}^{x_{i}-t}|f(x+t)-f(x)|^{p} d x d t, i=1, \ldots, n
$$

Then clearly the step function $\varphi_{n}=c_{i}$ for $x \in\left(x_{i-1}, x_{i}\right), i=1, \ldots, n$, satisfies the lemma.

Lemma 4. Let $f \in L_{p}[0,1], 0<p<1, k \geq 1$, and $0 \leq \delta \leq \frac{1}{k+1}$. Then we have:

$$
\begin{equation*}
\omega_{k}(f ; \delta)_{p}^{p} \leq C \delta^{k p}\left(\int_{\delta}^{1 /(k+1)} t^{-k p} \omega_{k+1}(f ; t)_{p}^{p} \frac{d t}{t}+\|f\|_{p}^{p}\right) \tag{8}
\end{equation*}
$$

Proof. We shall first verify the following identity that we will be using:

$$
\begin{equation*}
\Delta_{h}^{k} f(x)=2^{-k}\left(\Delta_{2 h}^{k} f(x)-\sum_{i=0}^{k-1} \sum_{j=i+1}^{k+1} f(x+i h)\right) \tag{9}
\end{equation*}
$$

Recall that we may show by induction that

$$
\Delta_{n h}^{k} f(x)=\sum_{v_{1}=0}^{n-1} \sum_{v_{2}=0}^{n-1} \cdots \sum_{v_{k}=0}^{n-1} \Delta_{h}^{k} f\left(x+\left(v_{1}+v_{2}+\cdots+v_{k}\right) h\right) .
$$

Hence

$$
\begin{align*}
\Delta_{2 h}^{k} f(x) & =\sum_{v_{1}=0}^{1} \sum_{v_{2}=0}^{1} \cdots \sum_{v_{k}=0}^{1} \Delta_{h}^{k} f\left(x+\left(v_{1}+v_{2}+\cdots+v_{k}\right) h\right) \\
& =\Delta_{h}^{k} f(x)+\binom{k}{1} \Delta_{h}^{k} f(x+h)+\cdots+\binom{k}{k} \Delta_{h}^{k} f(x+k h) \tag{10}
\end{align*}
$$

We also have the identity,

$$
\begin{equation*}
\Delta_{h}^{k} f(x+j h)=\Delta_{h}^{k} f(x)+\sum_{i=0}^{j-1} \Delta_{h}^{k+1} f(x+i h) \tag{11}
\end{equation*}
$$

This may be proven directly or by a simple induction arguement on k. Then by (10) and (11)

$$
\begin{aligned}
\Delta_{2 h}^{k} f(x) & =\sum_{j=0}^{k}\binom{k}{j} \Delta_{h}^{k} f(x+j h) \\
& =\sum_{j=0}^{k}\binom{k}{j}\left(\Delta_{h}^{k} f(x)+\sum_{i=0}^{j-1} \Delta_{h}^{k+1} f(x+i h)\right) \\
& =2^{k} \Delta_{h}^{k} f(x)+\sum_{j=1}^{k}\binom{k}{j} \sum_{i=0}^{j-1} \Delta_{h}^{k+1} f(x+i h) \\
& =2^{k} \Delta_{h}^{k} f(x)+\sum_{i=1}^{k-1} \sum_{j=i+1}^{k}\binom{k}{j} \Delta_{h}^{k+1} f(x+i h)
\end{aligned}
$$

which implies (9).
We make use of the function,

$$
\Omega_{k}(\delta)_{p}=\sup _{0<h \leq \delta}\left(\int_{0}^{1 / 2}\left|\Delta_{h}^{k} f(x)\right|^{p} d x\right)^{1 / p}
$$

By (9) and since $0<p<1$, we get

$$
\left|\Delta_{h}^{k} f(x)\right|^{p} \leq 2^{-k p}\left(\left|\Delta_{2 h}^{k} f(x)\right|^{p}+\sum_{i=0}^{k-1} \sum_{j=i+1}^{k}\binom{k}{j}^{p}\left|\Delta_{h}^{k+1} f(x+i h)\right|^{p}\right)
$$

Now for $0<h<\delta \leq \frac{1}{4 k}, 0 \leq x \leq 1 / 2$, and $i \leq k-1$ we have $x+i h \leq 3 / 4$, thus we obtain

$$
\begin{align*}
\Omega_{k}(\delta)_{p}^{p} & \leq \sup _{0<h \leq \delta} 2^{-k p} \int_{0}^{1 / 2}\left|\Delta_{2 h}^{k} f(x)\right|^{p}+\sum_{i=0}^{k-1} \sum_{j=i+1}^{k}\binom{k}{j}^{p} 2^{-k p} \sup _{0<h \leq \delta} \int_{0}^{1 / 2}\left|\Delta_{h}^{k+1} f(x+i h)\right|^{p} d x \\
& \leq 2^{-k p} \Omega_{k}(2 \delta)_{p}^{p}+C \omega_{k+1}(f ; \delta)_{p}^{p} \tag{12}
\end{align*}
$$

where $C=C(k, p)$. Let $r \geq 1$ and $0<\delta \leq 1 /\left(2^{r+1} k\right)$. Then by (12) we have for $i=0,1, \ldots, r-1$

$$
2^{-k p i} \Omega_{k}\left(2^{i} \delta\right)_{p}^{p} \leq 2^{-k p(i+1)} \Omega_{k}\left(2^{i+1} \delta\right)_{p}^{p}+C 2^{-k p i} \omega_{k+1}\left(f, 2^{i} \delta\right)_{p}^{p}
$$

Summing the inequalities over $i=0,1, \ldots, r-1$ and cancling terms seen on both the right side and left side of the inequality we get

$$
\begin{aligned}
\Omega_{k}(\delta)_{p}^{p} & \leq 2^{-k p r} \Omega_{k}\left(2^{r} \delta\right)_{p}^{p}+C \sum_{i=0}^{r-1} 2^{-k p i} \omega_{k+1}(f ; t)_{p}^{p} \\
& \leq 2^{-k p(r-1)}\|f\|_{p}^{p}+C_{1} \delta^{k p} \sum_{i=1}^{r-1} \int_{2^{i} \delta}^{2^{i+1} \delta} t^{-k p} \omega_{k+1}(f ; t)_{p}^{p} \frac{d t}{t} \\
& =2^{-k p(r-1)}\|f\|_{p}^{p}+C_{1} \delta^{k p} \int_{\delta}^{2^{r} \delta} t^{-k p} \omega_{k+1}(f ; t)_{p}^{p} \frac{d t}{t}
\end{aligned}
$$

The second inequality above follows from the simple inequality $\Omega_{k}(\delta)_{p} \leq 2^{k}\|f\|_{p}$, for $\delta k \leq 1 / 2$. From here simply note that $\omega_{k}(f ; \delta)_{p}^{p} \leq 2 \Omega_{k}(\delta)_{p}^{p}$, hence

$$
\begin{equation*}
\left.\omega_{k}(f ; \delta)\right) p^{p} \leq 2 \cdot 2^{-k p(r-1)}\|f\|_{p}^{p}+C_{1} \delta^{k p} \int_{\delta}^{2^{r} \delta} t^{-k p} \omega_{k+1}(f ; t)_{p}^{p} \frac{d t}{t} \tag{13}
\end{equation*}
$$

Let $0<\delta \leq 1 / 4 k$. Choose $r \geq 1$ such that $1 / 2^{r+2} k<\delta \leq 1 / 2^{r+1} k$. Then by (13) we obtain

$$
\omega_{k}(f ; \delta)_{p}^{p} \leq C \delta^{k p}\left(\int_{\delta}^{1 / 4 k} t^{-k p} \omega_{k+1}(f ; t)_{p}^{p} \frac{d t}{t}+\|f\|_{p}^{p}\right)
$$

which gives the lemma
Corollary 5 (Marchaud). Let $f \in L_{p}[0,1], 0<p<1$, $m>k \geq 1$, and $0<\delta \leq 1$. Then we have

$$
\omega_{k}(f ; \delta)_{p}^{p} \leq C \delta^{k p}\left(\int_{\delta}^{1} t^{-k p} \omega_{m}(f ; t)_{p}^{p} \frac{d t}{t}+\|f\|_{p}^{p}\right)
$$

Proof. We shall prove it by induction with respect to m. The inequality holds for $m=k+1$ by the previous lemma.
Suppose that it holds for some $m \geq k+1$. Then we obtain,

$$
\begin{align*}
\omega_{k}(f, \delta)_{p}^{p} & \leq C \delta^{k p}\left(\int_{\delta}^{1} t^{-k p-1} \omega_{m}(f, t)_{p}^{p} d t+\|f\|_{p}^{p}\right) \\
& \leq C \delta^{k p}\left(\int_{\delta}^{1} t^{-k p-1}\left[C \delta^{k p} \int_{t}^{1} u^{-m p-1} \omega_{m+1}(f ; t)_{p}^{p} d u+\|f\|_{p}^{p}\right]+\|f\|_{p}^{p}\right) \tag{14}\\
& \leq C_{1} \delta^{k p}\left(\int_{\delta}^{1} t^{-k p} \omega_{m+1}(f ; t)_{p}^{p} \frac{d t}{t}+\|f\|_{p}^{p}\right) \tag{15}
\end{align*}
$$

where in (14) we applied lemma 4 and in (15) we apply the Hardy inequality.

Proof of theorem 1 in the case $0<p \leq 1$. Suppose the theorem does not hold. Then there exists a sequence of functions $\left\{f_{m}\right\}_{m=1}^{\infty}, f_{m} \in L_{p}(0,1)$, such that

$$
\inf _{Q \in P_{k-1}}\left\|f_{m}-Q\right\|_{p}^{p}>m \omega_{k}\left(f_{m} ; 1 / k\right)_{p}^{p}, \quad m=1,2, \ldots
$$

Since the set of all polynomials $Q \in P_{k-1}$ such that $\|Q\|_{p} \leq 1$ is a compact set in $L_{p}(0,1)$, then for each m there exists a polynomial $Q_{m} \in P_{k-1}$ such that

$$
\begin{equation*}
\left\|f_{m}-Q_{m}\right\|_{p}=\inf _{Q \in P_{k-1}}\left\|f_{m}-Q\right\|_{p} \tag{16}
\end{equation*}
$$

Consequently

$$
\left\|f_{m}-Q_{m}\right\|_{p}^{p}>m \omega_{k}\left(f_{m} ; 1 / k\right)_{p}^{p}, \quad m=1,2, \ldots
$$

We will set

$$
g_{m}=\frac{f_{m}-Q_{m}}{\left\|f_{m}-Q_{m}\right\|_{p}}
$$

Then it is clear that

$$
\begin{equation*}
\inf _{Q \in P_{k-1}}\left\|g_{m}-Q\right\|_{p}=\left\|g_{m}\right\|_{p}=1 \tag{17}
\end{equation*}
$$

and by (16) we have

$$
\begin{equation*}
\omega_{k}\left(g_{m} ; k^{-1}\right)_{p}^{p}<1 / m, \quad m=1,2, \ldots \tag{18}
\end{equation*}
$$

We shall prove that $\left\{g_{m}\right\}_{1}^{\infty}$ is a precompact set in $L_{p}(0,1)$, i.e. there exists a function $g \in L_{p}$ and a subsequence $\left\{g_{m_{i}}\right\}_{1}^{\infty}$ such that $\left\|g-g_{m_{i}}\right\|_{p} \rightarrow 0$ as $i \rightarrow \infty$. To this end it is sufficient to prove that for all $\epsilon>0$ there exists a finite ϵ-net for $\left\{g_{m}\right\}_{1}^{\infty}$ in $L_{p}(0,1)$.

It follows from corollary 5 with $k=1, m=k$ and (17), (18) that

$$
\omega_{1}\left(g_{m} ; \delta\right)_{p}^{p} \leq c \delta^{p}\left(\int_{\delta}^{1} t^{-p} \frac{1}{m} \frac{d t}{t}+1\right) \leq c_{1}\left(\frac{1}{m}+\delta^{p}\right)
$$

for $0 \leq \delta \leq 1$ and $m=1,2, \ldots$ Therefore if follows that for each $\epsilon>0$ there exists $m_{0}>0$ and $\delta_{0}>0$ such that

$$
\begin{equation*}
\omega_{1}\left(g_{m} ; \delta\right)_{p}^{p} \leq \epsilon \quad \text { for } 0<\delta<\delta_{0} \quad \text { and } m \geq m_{0} \tag{19}
\end{equation*}
$$

Fix $n>1 / \delta_{0}$. Then by lemma 3 and (19) that for each $m>m_{0}$ there exists a step function $\varphi_{m, n}$ with points of discontinuity $i / n, i=1, \ldots, n-1$, such that

$$
\begin{equation*}
\left\|g_{m}-\varphi_{m, n}\right\|_{p}^{p} \leq 2 \omega_{1}\left(g_{m} ; n^{-1}\right)_{p}^{p}<2 \epsilon \tag{20}
\end{equation*}
$$

On the other hand by (17) and (20) we get

$$
\left\|\varphi_{m, n}\right\|_{p}^{p} \leq\left\|g_{m}\right\|_{p}^{p}+\left\|g_{m}-\varphi_{m, n}\right\|_{p}^{p}<1+2 \epsilon
$$

Since $\varphi_{m, n}(x)$ is constant for $x \in((i-1) / n, i / n), i=1, \ldots, n$, for $m>m_{0}$ we have

$$
\begin{aligned}
\left\|\varphi_{m, n}\right\|_{\infty} & \leq \sum_{i=1}^{n}\left|\varphi_{m, n}\left(\frac{i-.5}{n}\right)\right| n^{1 / p}(1 / n)^{1 / p} \\
& =\sum_{i=1}^{n}\left(n \int_{(i-1) / n}^{i / n}\left|\varphi_{m, n}(x)\right|^{p} d x\right)^{1 / p} \\
& \leq\left(\sum_{i=1}^{n} n \int_{(i-1) / n}^{i / n}\left|\varphi_{m, n}\right|^{p} d x\right)^{1 / p} \\
& =\left(n \int_{0}^{1}\left|\varphi_{m, n}\right|^{p} d x\right)^{1 / p} \leq((1+2 \epsilon) n)^{1 / p}=M .
\end{aligned}
$$

Now consider the set Ψ of all step functions ϕ of the type

$$
\phi(x)=r \epsilon^{1 / p}, \quad x \in\left(\frac{i-1}{n}, \frac{i}{n}\right), \quad i=1, \ldots, n, \quad r=0, \pm 1, \ldots, \quad\|\phi\|_{\infty} \leq M
$$

Clearly

$$
\inf _{\phi \in \Psi}\left\|\phi_{m, n}-\phi\right\|_{p}^{p} \leq \int_{0}^{1}\left(\epsilon^{1 / p}\right)^{p}=\epsilon
$$

and therefore Ψ is an ϵ-net for the set $\left\{\phi_{m, n}\right\}_{m=m_{0}+1}^{\infty}$. From this and (20) it follows that

$$
\inf _{\phi \in \Psi}\left\|g_{m}-\phi\right\|_{p}^{p} \leq\left\|g_{m}-\phi_{m, n}\right\|_{p}^{p}+\inf _{\phi \in \Psi}\left\|\phi_{m, n}-\phi\right\|_{p}^{p} \leq 3 \epsilon,
$$

hence Ψ is a 3ϵ-net for $\left\{g_{m}\right\}_{m=m_{0}+1}^{\infty}$. Thus $\left\{g_{m}\right\}_{m=m_{0}+1}^{\infty}$ is a precompact set in $L_{p}(0,1)$. So for an appropriate subsequence $\left\{g_{m_{i}}\right\}_{i=1}^{\infty}$ there exists $g \in L_{p}(0,1)$ such that $\left\|g_{m_{i}}-g\right\|_{p} \rightarrow 0$ as $i \rightarrow \infty$. Hence, in view of (17) we have

$$
\inf _{Q \in P_{k-1}}\|g-Q\|_{p}^{p} \geq \inf _{Q \in P_{k-1}}\left\|g_{m_{i}}-Q\right\|_{p}^{p}-\left\|g-g_{m_{i}}\right\|_{p}^{p} \rightarrow 1 \quad \text { as } \quad i \rightarrow \infty
$$

and

$$
\inf _{Q \in P_{k-1}}\|g-Q\|_{p}^{p} \leq \inf _{Q \in P_{k-1}}\left\|g_{m_{i}}-Q\right\|_{p}^{p}+\left\|g-g_{m_{i}}\right\|_{p}^{p} \rightarrow 1 \quad \text { as } \quad i \rightarrow \infty
$$

Therefore

$$
\begin{equation*}
\inf _{Q \in P_{k-1}}\|g-Q\|_{p}^{p}=1 \tag{21}
\end{equation*}
$$

On the other hand by (18) we get

$$
\begin{aligned}
\omega_{k}\left(g ; k^{-1}\right)_{p}^{p} & \leq \omega_{k}\left(g_{m_{i}} ; k^{-1}\right)_{p}^{p}+\omega_{k}\left(g-g_{m_{i}} ; k^{-1}\right)_{p}^{p} \\
& \leq \omega_{k}\left(g_{m_{i}} ; k^{-1}\right)_{p}^{p}+2^{k p}\left\|g-g_{m_{i}}\right\|_{p}^{p} \rightarrow 0 \quad \text { as } \quad i \rightarrow \infty
\end{aligned}
$$

Thus $\omega_{k}\left(g ; k^{-1}\right)_{p}=0$. As we shall show below this equality implies that $g \equiv Q$ a.e. for some $Q \in P_{k-1}$, which contradicts ().
Lemma 6. Let $f \in L_{p}(0,1), 0<p \leq 1$, and $\omega_{k}\left(f ; k^{-1}\right)_{p}=0$. Then there exists a polynomial $Q \in P_{k-1}$ such that $f \equiv Q$ almost everywhere in $[0,1]$.
Proof. We shall prove the lemma by induction with respect to k. In the case $k=1$, the lemma follows by lemma 2. Now suppose the lemma holds for some $k \geq 1$. Suppose that

$$
\begin{equation*}
\omega_{k+1}\left(f ;(k+1)^{-1}\right)_{p}^{p}=\sup _{0 \leq h \leq(k+1)^{-1}} \int_{0}^{1-(k+1) h}\left|\Delta_{h}^{k+1} f(x)\right|^{p} d x=0 . \tag{22}
\end{equation*}
$$

First we shall prove that

$$
\begin{equation*}
\int_{0}^{1-k h_{1}-h}\left|\Delta_{h_{1}}^{k} \Delta_{h}^{1} f(x)\right|^{p} d x=0, \quad h_{1}, h \geq 0, \quad k h_{1}+h \leq 1 \tag{23}
\end{equation*}
$$

If $h_{1}=\alpha h$ and $\alpha=m / n$ for some $m, n \in \mathbb{Z}^{+}$, then appling the identity from lemma 4 twice we obtain

$$
\begin{aligned}
\left|\Delta_{(m / n) h}^{k} \Delta_{h}^{1} f(x)\right|^{p} & \leq \sum_{v_{1}=0}^{m-1} \cdots \sum_{v_{k}=0}^{m-1}\left|\Delta_{h / n}^{k} \Delta_{\frac{h n}{n}}^{1} f\left(x+\frac{h}{n}\left(v_{1}+\cdots+v_{k}\right)\right)\right|^{p} \\
& =\sum_{v_{1}=0}^{m-1} \cdots \sum_{v_{k}=0}^{m-1}\left|\Delta_{h / n}^{k} \sum_{v=0}^{n-1} \Delta_{h / n}^{1} f\left(x+\frac{h}{n}\left(v_{1}+\cdots+v_{k}+v\right)\right)\right|^{p} \\
& \leq \sum_{v_{1}=0}^{m-1} \cdots \sum_{v_{k}=0}^{m-1} \sum_{v=0}^{n-1}\left|\Delta_{h / n}^{k+1} f\left(x+\frac{h}{n}\left(v_{1}+\cdots+v_{k}+v\right)\right)\right|^{p}
\end{aligned}
$$

Integrating with respect to $x \in[0,1-(k m / n+1)+h]$ and using (22) we conclude that (23) holds true. No we need to show it holds true for irrational numbers α. So suppose that $h_{1}=\alpha h, a>0$ and irrational number. Choose a sequence $\left\{a_{i}\right\}_{i=1}^{\infty}$ of rational numbers such that $\alpha_{i} \rightarrow \alpha$ and $0<\alpha_{i}<\alpha$. We have

$$
\begin{aligned}
\left|\Delta_{\alpha h}^{k} \Delta_{h}^{1} f(x)\right| & \leq\left|\Delta_{\alpha_{i} h}^{k} \Delta_{h}^{1} f(x)\right|+\left|\Delta_{\alpha h}^{k} \Delta_{h}^{1} f(x)-\Delta_{\alpha_{i} h}^{k} \Delta_{h}^{1} f(x)\right| \\
& =\left|\Delta_{\alpha_{i} h}^{k} \Delta_{h}^{1} f(x)\right|+\left|\sum_{v=0}^{k}\binom{k}{v} \Delta_{h}^{1}\left(f(x+v \alpha h)-f\left(x+v \alpha_{i} h\right)\right)\right| \\
& \leq\left|\Delta_{\alpha_{i} h}^{k} \Delta_{h}^{1} f(x)\right|+\sum_{v=0}^{k}\binom{k}{v}\left(\left|f(x+v \alpha h+h)-f\left(x+v \alpha_{i} h+h\right)\right|\right. \\
& \left.+\left|f(x+v \alpha h)-f\left(x+v \alpha_{i} h\right)\right|\right) \\
& =\left|\Delta_{\alpha_{i} h}^{k} \Delta_{h}^{1} f(x)\right|+\sum_{v=0}^{k}\binom{k}{v}\left|\Delta_{v\left(\alpha-\alpha_{i}\right) h}^{1} f(x+h)\right|+\left|\Delta_{v\left(\alpha-\alpha_{i}\right) h}^{1} f(x)\right|
\end{aligned}
$$

Therefore

$$
\begin{align*}
\int_{0}^{1-k \alpha h-h}\left|\Delta_{\alpha_{i} h}^{k} \Delta_{h}^{1} f(x)\right| & \leq \int_{0}^{1-k \alpha_{i} h-h}\left|\Delta_{\alpha h}^{k} \Delta_{h}^{1} f(x)\right|+c(k, p) \omega_{1}\left(f ; k\left(\alpha-\alpha_{i}\right) h\right)_{p}^{p} \\
& =c(k, p) \omega_{1}\left(f ; k\left(\alpha-\alpha_{i}\right) h\right)_{p}^{p} \tag{24}
\end{align*}
$$

where we have used that (23) holds for α_{i} a rational number. Since $\omega_{1}(f ; \delta)_{p} \rightarrow 0$ as $\delta \rightarrow 0$ (24) implies (23).

Now since (23) holds, we have $g(x)=\Delta_{h}^{1} f(x)$ is such that

$$
\int_{0}^{1-k h_{1}-h}\left|\Delta_{h_{1}}^{k} g(x)\right|^{p}=0, \quad h_{1}, h \geq 0, \quad k h_{1}+h \leq 1
$$

hence in view of our induction hypothesis, $g(x)$ is equal to a polynomial of degree $k-1$ a.e. for $x \in[0,1-h]$. There for there exists a polynomial $Q_{h} \in P_{k-1}$ such that

$$
\begin{equation*}
f(x+h)-f(x)=\sum_{v=0}^{k-1} a_{v}(h) x^{v} \tag{25}
\end{equation*}
$$

almost everywhere in $[0,1-h]$.
We shall prove that each coefficient $a_{v}(h)$ is a continuous function of $h \in[0,1)$. Let $0 \leq h_{1} \leq h_{2}<1$. Then we note that

$$
\begin{equation*}
f\left(x+h_{1}\right)-f\left(x+h_{2}\right)=\sum_{v=0}^{k-1}\left(a_{v}\left(h_{1}\right)-a_{v}\left(h_{2}\right)\right) x^{v} \tag{26}
\end{equation*}
$$

We note that for $P(x) \in P_{k-1}[0, b], b>0$, where $P(x)=\sum_{i=0}^{k-1} c_{v} x^{v}$, we have the following as norms:

$$
\begin{aligned}
& \|P\|_{1}:=\sum_{v=0}^{k-1}\left|c_{v} \| b\right|^{v} \\
& \|P\|_{2}:=\left(\frac{1}{b} \int_{0}^{b}|P(x)|^{p} d x\right)^{1 / p}
\end{aligned}
$$

Since all norms on a finite dimensional space are equivalent, we may apply this to (26) to obtain

$$
\begin{aligned}
\sum_{v=0}^{k-1}\left|a_{v}\left(h_{1}\right)-a_{v}\left(h_{2}\right)\right||1-h|^{v} & \leq c\left(\frac{1}{1-h_{2}} \int_{0}^{1-h_{2}}\left|f\left(x+h_{1}\right)-f\left(x+h_{2}\right)\right|^{p} d x\right)^{1 / p} \\
& \leq c_{1}\left(\frac{1}{1-h_{2}} \omega_{1}\left(f ;\left|h_{1}-h_{2}\right|\right)_{p}^{p}\right)
\end{aligned}
$$

Since $\omega_{1}(f ; \delta)_{p} \rightarrow 0$, it follows that $a_{v}(h)$ is a continuous function of $h \in[0,1)$.
Applying an arbitrary $(k+1)$ th difference Δ_{t}^{k+1} to (25) as a function of h we obtain

$$
\Delta_{t}^{k+1} f(x+h)=\sum_{v=0}^{k-1}\left(\Delta_{t}^{k+1} a_{v}(h)\right) x^{v}
$$

for almost all $x \in(0,1-h-(k+1) t)$ and $t, h \geq 0, h+(k+1) t<1$. By our initial assumptions, for almost all $x \in(0,1-h-(k+1) t), h+(k+1) t<1$, we have $\Delta_{h}^{k+1} f(x)=0$, and since $a_{v}(h)$ is a continuouse function of h we have

$$
\Delta_{t}^{k+1} a_{v}(h)=0, \quad 0 \leq h<1-(k+1) t, \quad 0 \leq t<1 /(k+1), \quad v=0, \ldots, k-1
$$

Since we have already proven Whitney's theorem for $p=\infty$, we conclude that $a_{v}(h)$ coincides with some polynomial $Q(h) \in P_{k}$ for all $h \in[0,1), v=0, \ldots, k-1$. In view of (25), we conclude that $f(x+h)$ coincides with a polynomial in P_{k} as a function of h. This gives the lemma.

